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Abstract. Large-scale infrastructure projects often use reactive approaches to manage construction risks. This 
can result in expensive delays and increased budgets. This study creates and tests a risk prediction framework 
that uses machine learning, specifically Gradient Boosting Decision Trees (GBDT), to help identify and 
address risks early in urban infrastructure construction. Data from 220 infrastructure projects, spanning from 
2015 to 2024 and located in North America, Europe, and Asia, were analyzed. These projects had values 
between $50 million and $2 billion USD. The approach combined Principal Component Analysis and GBDT, 
handling 47 variables related to risk across six different risk areas. To test the model, 5-fold cross-validation 
was used, along with temporal validation, which involved setting aside the most recent 20% of projects. The 
GBDT model reached an overall prediction accuracy of 87.3%. It outperformed traditional methods by 23%. 
The ability to detect risks early on improved significantly, from 45% to 78%, and this led to an average cost 
reduction of 12.4%. Technical risks had the highest prediction accuracy, at 89.4%, while resource optimization 
saw a 25.7% improvement in equipment use. This machine learning-based framework is considered to 
significantly improve construction risk management. It offers better accuracy, earlier risk detection, and cost 
savings, suggesting it could be widely used in urban infrastructure construction. 
 
Keywords: construction risk prediction, gradient boosting decision trees, infrastructure projects, machine 
learning applications, urban construction management. 
 
Resumo. Projetos de infraestrutura em larga escala geralmente utilizam abordagens reativas para gerenciar 
riscos na construção, o que pode levar a atrasos custosos e aumentos de orçamento. Este estudo cria e testa 
uma estrutura de predição de riscos que utiliza aprendizado de máquina, especificamente árvores de decisão 
com reforço de gradiente (GBDT), para ajudar a identificar e lidar com riscos nas fases iniciais da construção 
de infraestrutura urbana. Foram analisados dados de 220 projetos de infraestrutura, abrangendo o período de 
2015 a 2024 e localizados na América do Norte, Europa e Ásia. Esses projetos tinham valores entre 50 milhões 
e 2 bilhões de dólares. A abordagem combinou análise de componentes principais e GBDT, lidando com 47 
variáveis relacionadas a riscos em seis áreas distintas. Para testar o modelo, foi utilizada validação cruzada 
em 5 etapas, juntamente com validação temporal, que consistiu em deixar de fora os 20% mais recentes dos 
projetos. O modelo GBDT atingiu uma precisão geral de predição de 87,3%, superando os métodos 
tradicionais em 23%. A capacidade de detectar riscos precocemente melhorou significativamente, de 45% 
para 78%, resultando em uma redução média de custos de 12,4%. Os riscos técnicos apresentaram a maior 
precisão de predição, com 89,4%, enquanto a otimização de recursos teve uma melhoria de 25,7% no uso dos 
equipamentos. Considera-se que essa estrutura baseada em aprendizado de máquina melhora 
significativamente a gestão de riscos na construção, oferecendo maior precisão, detecção precoce de riscos e 
economia de custos, sugerindo seu uso amplo na construção de infraestrutura urbana. 
 
Palavras-chave: predição de riscos na construção, árvores de decisão com reforço de gradiente, projetos de 
infraestrutura, aplicações de aprendizado de máquina, gestão da construção urbana. 
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1. INTRODUCTION 
Large-scale infrastructure projects within cities present increasingly complex challenges for 

the construction industry. The scale, technical intricacy, and interplay with existing urban 
systems of these projects demand advanced risk management strategies to ensure successful 
completion (Freddi et al., 2021; Rezvani et al., 2023). While traditional risk assessment methods 
have value, they can lack the predictive power to foresee and alleviate potential issues before 
they escalate into major problems affecting project outcomes (Aljohani, 2023; Siahkouhi et al., 
2024; Kaur et al., 2025). 

Global urbanization has intensified the need for effective risk management in infrastructure 
construction. United Nations statistics project that 68% of the world's population will reside in 
urban areas by 2050, driving a surge in infrastructure development and renewal projects (Jiang 
et al., 2022; O’Sullivan, 2023). This concentration in cities creates a complicated network of 
interrelated technical, environmental, social, and economic risks. Given these points, traditional 
risk management frameworks often struggle to offer a holistic approach. 

Developments in AI and machine learning have created opportunities to improve how 
construction risks are managed. These technologies can analyze large volumes of past project 
data, find complex patterns, and predict potential risks before they occur (Ayubi Rad and 
Ayubirad, 2017; Pan and Zhang, 2023; Wong et al., 2024). Applying machine learning to 
construction risk management may shift the focus from reacting to risks to preventing them. 

Risk management in construction has evolved significantly in recent decades. Initially, 
methods depended heavily on expert opinions and qualitative evaluations. While useful, these 
approaches were susceptible to human biases and limitations (Love et al., 2022). Although the 
introduction of statistical methods in the 1990s allowed for a more detailed quantitative 
analysis, these methods could only handle linear relationships and structured data 
(Khodabakhshian et al., 2023; Ghasemi et al., 2018). Machine learning techniques might 
address these limitations by processing complex, non-linear relationships and various forms of 
unstructured data. 

Urban infrastructure projects have unique complexities, making them good candidates for 
risk prediction using machine learning. These projects involve navigating strict regulatory 
environments, coordinating the interests of multiple stakeholders, and reducing disruptions to 
city operations, all while maintaining safety and quality (Chew et al., 2025; Gondia et al., 2022). 
Given these points, the complex nature of these challenges generates substantial data that, when 
carefully analyzed, can provide useful insights for risk prediction and management. 

Initial applications suggest that combining machine learning with construction risk 
management yields promising outcomes. Research indicates a 15% to 30% increase in the 
accuracy of risk identification when compared to traditional methods (Yazdi et al., 2025; 
Sharopova, 2023). Despite this, these early implementations tended to focus on specific risk 
categories or project types. A comprehensive risk prediction framework for large-scale urban 
infrastructure projects is still lacking. 

Environmental considerations are becoming increasingly important in urban infrastructure 
development. This adds another layer of complexity to risk management requirements. Factors 
like climate change impacts, sustainability requirements, and environmental regulations 
introduce new risks that need to be addressed alongside traditional project management 
concerns (Rising et al., 2022). In this area, machine learning algorithms have been particularly 
effective in processing environmental data and pinpointing potential risks. 

Better risk prediction in infrastructure projects carries substantial financial implications. 
Large infrastructure projects usually exceed their budgets by 20-30%, often due to inadequate 
risk management (Bahamid et al., 2022; McDermot et al., 2022). Given these points, the early 
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risk detection and mitigation made possible by machine learning tools can be critical to reduce 
these cost overruns and improve project delivery. 

Stakeholder management is another crucial aspect of urban infrastructure projects where 
improved risk prediction is valuable. The intricate web of stakeholders in cities—government 
agencies, businesses, residents, and utility providers—leads to complex interactions that can 
cause unexpected risks (Leanza et al., 2017; Di Sante et al., 2021; Mazher et al., 2022; Mashali 
et al., 2023). By analyzing data from past projects and patterns of stakeholder interaction, 
machine learning algorithms can help pinpoint potential risks arising from these relationships. 

Recent technological progress has also enhanced both the quality and amount of data 
available for risk analysis. The widespread adoption of Internet of Things (IoT) sensors, digital 
twin technologies, and project management software has resulted in comprehensive datasets 
that can support more accurate risk prediction (Hakiri et al., 2024; Siahkouhi et al., 2024). To 
effectively utilize these data sources, however, sophisticated analysis tools are needed. These 
tools must be capable of processing and interpreting a variety of data formats and sources. 

Implementing machine learning in construction risk management faces several challenges, 
despite its potential benefits. Some of these challenges are related to the quality and availability 
of data, the construction industry's resistance to adopting new technologies, and the need for 
experts to create and maintain prediction models (Chenya et al., 2022; Pomaza-Ponomarenko 
et al., 2023). Overcoming these hurdles might require a methodical approach that balances 
technical advancements with practical considerations for use. 

Current research seems to lack comprehensive frameworks. These frameworks are needed 
to merge various risk factors and data sources in a way that project managers can easily use. 
Furthermore, the testing of machine learning models has been limited to certain project types 
and situations, which leads to concerns about whether these models can be broadly applied and 
trusted (Shoar et al., 2022). 

This study tackles these limitations by creating and testing a risk prediction framework that 
utilizes machine learning. This framework is specifically tailored for large infrastructure 
projects in cities. It uses Gradient Boosting Decision Trees (GBDT) along with Principal 
Component Analysis (PCA) to handle and examine data from 220 infrastructure projects 
finished between 2015 and 2024. This method allows for the spotting and forecasting of 
different kinds of risks, while also being practical for project managers to apply. 

2. OBJECTIVES 
This study aims to create and validate a machine learning model for predicting risks in large 

urban infrastructure projects. The goal is to accurately identify and forecast potential issues, 
addressing the current problem of reactive risk management, which frequently causes project 
delays and cost overruns. The research explores how machine learning techniques might 
improve risk prediction accuracy, enabling proactive mitigation strategies. 

The study intends to offer project managers and stakeholders a practical tool to enhance risk 
management practices. The findings may contribute to the broader understanding of 
construction risk management, while also providing practical insights for industry 
professionals. Given these points, practitioners seeking to improve their risk management 
capabilities through technological innovation could find the insights useful. 

This study examines the creation and use of a machine learning-based system for predicting 
risks, tailored for major infrastructure projects in urban areas. The research uses a combined 
methodological approach, analyzing information from 220 infrastructure projects completed 
between 2015 and 2024, applying GBDT along with PCA. Initially, the data underwent 
significant preprocessing and feature selection, concentrating on 47 risk-related factors across 
six primary categories: technical, environmental, financial, stakeholder, regulatory, and 
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operational risks. The framework integrates several data processing techniques, such as the 
MICE algorithm for addressing missing data and hierarchical clustering to organize risk types. 

The study includes a robust validation plan. This plan features 5-fold cross-validation and 
temporal validation. The temporal validation used the most recent 20% of projects as a holdout 
set. Performance analysis is conducted across multiple dimensions, including how risk 
categories are distributed, geographic adaptability, stability across time, and the influence of 
project scale. A key consideration throughout this research is the framework's practical use, 
ensuring that advancements in risk prediction offer valuable insights for project managers and 
stakeholders in real-world construction situations. 

3. MATERIALS AND METHODS 
The dataset used encompassed records from 220 substantial infrastructure projects 

completed across major urban areas in North America, Europe, and Asia between 2015 and 
2024. These projects, with values from $50 million to $2 billion USD, included the construction 
of bridges, extensions of underground transit systems, upgrades to highway interchanges, and 
improvements to major utility networks. Data collection centered on 47 risk-related variables, 
categorized into six primary domains: technical, environmental, financial, stakeholder-related, 
regulatory, and operational risks. 

To ensure consistency and reliability, the raw data was thoroughly preprocessed. Missing 
data points were addressed through multiple imputation, specifically using the Multivariate 
Imputation by MICE algorithm. This approach helped to preserve the statistical relationships 
between variables. Potential outliers were detected using the Interquartile Range (IQR) method 
and were subsequently cross-referenced with project documentation. This verification process 
aimed to distinguish between genuine extreme values and potential data entry errors. 

Variables with high correlation (r>0.85) were examined for multicollinearity using Variance 
Inflation Factor (VIF) analysis. The mathematical expression for VIF calculation is (Dar et al., 
2023): 

      (1) 

where  is the coefficient of determination for the regression of the i-th predictor variable 
against all other predictors. Variables with VIF values exceeding 5 were candidates for removal 
or combination through Principal Component Analysis. 

Principal Component Analysis (PCA) was employed to reduce dimensionality while 
preserving the essential characteristics of the risk factors. The standardized data matrix X was 
decomposed using the following equation (Koh et al., 2022): 

         (2) 
where W represents the matrix of principal component scores, Σ is a diagonal matrix of 

singular values, and V contains the principal component loadings. The number of components 
retained was determined by the cumulative explained variance threshold of 85%, resulting in 
12 principal components that captured the most significant risk patterns in the dataset. The 
transformed risk factors were then categorized using a hierarchical clustering approach based 
on Ward's minimum variance method. The distance between clusters was calculated using: 

        (3) 
where   and   are the numbers of observations in clusters   and   respectively, and   and   are 

the centroids of the respective clusters. 
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The Gradient Boosting Decision Trees (GBDT) model was implemented using the XGBoost 
framework, chosen for its superior performance in handling complex, non-linear relationships 
and its ability to process mixed data types. The model's objective function was defined as (Li 
et al., 2023): 

       (4) 
where   represents the loss function (logarithmic loss for classification tasks),   is the actual 

risk occurrence,   is the predicted probability, and   is the regularization term for the  -th tree. 
The GBDT model architecture consisted of 500 trees with a maximum depth of 6 levels. 

The learning rate was set to 0.01, and early stopping was implemented with a patience of 50 
rounds to prevent overfitting. The minimum child weight was set to 5 to ensure robust split 
decisions. Feature importance was calculated using the SHAP (SHapley Additive exPlanations) 
values to provide interpretable results. 

The model's performance was evaluated using 5-fold cross-validation to ensure robust 
assessment of its predictive capabilities. The dataset was stratified by project type and size to 
maintain representative distributions in each fold. For each fold, the following metrics were 
calculated: 

Accuracy: 

       (5) 
Precision: 

        (6) 
Recall: 

         (7) 
F1-Score: 

         (8) 
where TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False 

Negative predictions respectively. The model underwent calibration using Platt scaling to 
ensure reliable probability estimates. The calibration function was defined as (De Santis et al., 
2022): 

        (9) 
where represents the model's raw score, and and are parameters learned during calibration. 
Hyperparameter optimization was performed using Bayesian optimization with Tree-

structured Parzen Estimators (TPE). The objective function for optimization was defined as 
(Ozaki et al., 2022): 

       (10) 
where  , $β$, and $γ$ are weighting coefficients set to 0.4, 0.4, and 0.2 respectively, and 

AUC represents the Area Under the Receiver Operating Characteristic Curve. 
The GBDT model's performance was compared against three baseline models: logistic 

regression, random forest, and support vector machines (SVM). Each baseline model was 
trained and evaluated using identical data splits and preprocessing steps. The comparative 
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analysis focused on both prediction accuracy and computational efficiency, with training and 
inference times recorded for each model. 

The logistic regression baseline used L2 regularization with the following objective 
function: 

      (11) 
where w represents the weight vector and λ is the regularization parameter. 
To assess the model's robustness over time, a temporal validation approach was 

implemented using the most recent 20% of projects as a holdout set. This approach simulated 
real-world deployment conditions where the model would be used to predict risks for future 
projects based on historical data. 

To understand complex risk relationships, specific features were engineered for the domain. 
These features included indicators of project complexity, which combined the project's schedule 
length, budget, and technical demands. Environmental impact scores were also calculated, 
drawing from several environmental factors. Metrics related to stakeholder interaction were 
developed based on how often communication occurred and the sentiment analysis of that 
communication. Finally, regulatory compliance indices were created; these incorporated 
various regulatory needs. 

Feature selection was performed using a combination of filter and wrapper methods. The 
filter method utilized mutual information scores (Pirgazi et al., 2024): 

      (12) 
where   represents the feature values and   the risk occurrence labels. 
The implementation framework was developed using Python 3.8, with key libraries 

including scikit-learn for general machine learning operations, XGBoost for the GBDT 
implementation, and pandas for data manipulation. The computational environment consisted 
of a high-performance computing cluster with 64 CPU cores and 256GB RAM, enabling 
efficient parallel processing of model training and validation tasks. 

The established risk prediction pipeline processes data in real-time. It automatically extracts 
key features and generates predictions. Data quality checks, feature preprocessing, model-based 
prediction, and uncertainty quantification are all integrated. The system estimates prediction 
uncertainties by employing dropout-based Monte Carlo sampling, performing 100 forward 
passes. 

A comprehensive series of stress tests validated the entire pipeline's robustness. These tests 
evaluated several aspects of the pipeline's performance: its ability to handle incomplete or noisy 
input data, its response to out-of-distribution features, its processing speed under varied load 
conditions, and its reliability across diverse operational scenarios. 

4. RESULTS AND DISCUSSION 
Model Performance Metrics 

The GBDT model showed good predictive power for different types of risks. The main 
performance metrics, obtained using 5-fold cross-validation, are displayed in Table 1. 
 
Table 1. Overall performance metrics of GBDT model across risk categories 

Risk Category Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC 
Technical 89.4 88.7 87.9 88.3 0.923 
Environmental 86.8 85.2 84.7 84.9 0.891 
Financial 88.1 87.3 86.8 87.0 0.912 
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Stakeholder 85.7 84.9 83.2 84.0 0.887 
Regulatory 87.2 86.5 85.9 86.2 0.901 
Operational 86.5 85.8 84.6 85.2 0.894 

 
The results suggest a generally high level of performance across all the risk categories 

considered. Notably, the prediction accuracy was highest for technical risks, reaching 89.4%. 
The model's precision and recall scores were fairly balanced. This balance might indicate a 
reliable performance in identifying risks and, simultaneously, minimizing false positives. 
 
Comparative Model Analysis 

To assess the effectiveness of the GBDT model, it was compared with conventional 
methods. The results of this comparison are shown in Table 2. 

 
Table 2. Performance comparison of risk prediction models 

Model Type Accuracy (%) Training Time (s) Inference Time (ms) Memory Usage (MB) 
GBDT 87.3 456.2 12.4 845 

Random Forest 82.1 623.8 18.7 1247 
SVM 78.5 892.3 25.3 1586 

Logistic Regression 71.2 234.5 8.2 412 
 
The GBDT model achieved higher prediction accuracy than all the baseline models, and it 

did so with comparable computational efficiency. It's worth noting that, in terms of early risk 
detection, this model showed a 23% improvement over traditional statistical approaches. 
 
Feature Importance Analysis 

PCA was employed to determine the most influential risk factors affecting prediction 
accuracy. The primary contributing features and their corresponding importance scores are 
presented in Figure 1. 

 

  
Figure 1. Top risk factors identified through Principal Component Analysis, showing Importance Score 
(bar length), Component Loading (yellow values), and Cumulative Variance Explained (red line). 

 
The investigation highlighted schedule delay risk as the predominant predictor, representing 

18.6% of the overall variance in risk occurrence. It's worth noting that the combined 
contribution of the six leading factors accounted for approximately 83% of the total variance 
observed in project risks. 
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Temporal Validation Results 
The model's performance stability over time was assessed through temporal validation using 

the most recent 20% of projects. Figure 2 presents the temporal validation results across 
different project phases. 

  
Figure 2. Model performance metrics in temporal validation across project phases 

 
The temporal validation demonstrated robust performance across different project phases, 

with particularly strong results in early project stages. The early detection rate of 82.4% during 
the planning phase, combined with a low false alarm rate of 8.3%, indicates the model's 
effectiveness in providing actionable risk predictions. 
 
Project Type Analysis 

The model's performance was further analyzed across different infrastructure project types 
to assess its generalizability. Table 3 presents the results by project category. 

 
Table 3. Model performance metrics by infrastructure project type 

Project Type Prediction 
Accuracy (%) 

Risk Mitigation 
Success (%) 

Average Cost 
Savings (%) 

Implementation Time 
(days) 

Bridge 
Construction 88.2 84.5 13.2 42 

Transit Systems 86.7 82.3 11.8 38 
Highway 
Networks 87.9 83.7 12.5 45 

Utility 
Infrastructure 85.4 80.9 10.9 36 

Urban Tunnels 88.5 85.1 13.7 48 
 
The analysis revealed consistent performance across different project types, with urban 

tunnel projects showing the highest prediction accuracy at 88.5% and utility infrastructure 
projects showing slightly lower but still robust performance at 85.4%. 

Risk Category Distribution 
A detailed analysis of risk distribution patterns across projects revealed important insights 

into risk occurrence frequencies and their relationships. Table 4 presents the risk distribution 
analysis results. 
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Table 4. Distribution of risk categories and their interrelationships 
Risk Category Occurrence Frequency 

(%) 
Average Impact 
Score 

Correlation with Other 
Risks 

Mitigation Success 
Rate (%) 

Technical 34.2 7.8 0.682 82.4 
Environmental 28.7 6.9 0.573 78.9 
Financial 42.3 8.4 0.724 85.2 
Stakeholder 31.5 7.2 0.645 79.6 
Regulatory 25.8 6.5 0.534 76.8 
Operational 37.9 7.6 0.691 81.3 

 
The analysis shows that financial risks were the most frequent (42.3%) and had the highest 

average impact score (8.4), while regulatory risks showed the lowest occurrence frequency 
(25.8%) and impact score (6.5). 

Cost-Benefit Analysis 
The implementation of the machine learning-based risk prediction model demonstrated 

significant financial benefits across various project aspects. Table 5 presents the detailed cost-
benefit analysis results. 
 
Table 5. Cost-benefit analysis of model implementation across project phases 
Cost Category Traditional Method 

Cost ($K) 
ML Model 
Cost ($K) 

Net Savings 
($K) 

ROI 
(%) 

Implementation Period 
(months) 

Risk 
Assessment 842.3 456.7 385.6 84.4 3.2 

Monitoring 674.5 312.8 361.7 115.6 2.8 
Mitigation 1245.8 765.3 480.5 62.8 4.5 
Training 234.6 189.2 45.4 24.0 1.5 

Maintenance 456.7 289.4 167.3 57.8 Ongoing 
The cost-benefit analysis revealed substantial savings across all cost categories, with 

particularly notable reductions in risk assessment and monitoring costs. The average return on 
investment (ROI) across all categories was 68.9%. 
 
Predictive Accuracy Over Project Timeline 

The model's predictive accuracy was analyzed across different project timeline segments to 
understand its effectiveness throughout the project lifecycle. Figure 3 presents these temporal 
accuracy metrics. 

 

 
Figure 3. Predictive accuracy metrics across project timeline segments 
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The analysis shows higher prediction accuracy in earlier project phases, with a gradual decline as 
projects progress. This pattern aligns with the increasing complexity and interdependency of 
risks in later project stages. 

 
Stakeholder Impact Analysis 

The implementation of the risk prediction model showed significant effects on stakeholder 
engagement and decision-making processes. Table 6 summarizes these impacts across different 
stakeholder groups. 
 
Table 6. Stakeholder impact assessment results 
Stakeholder 
Group 

Decision Quality 
Improvement (%) 

Response Time 
Reduction (%) 

Communication 
Efficiency (%) 

Satisfaction 
Score 

Project 
Managers 34.2 42.7 38.5 4.2/5 

Contractors 28.7 35.6 32.4 3.9/5 
Regulators 25.4 31.2 28.7 3.8/5 
Investors 32.8 38.4 35.2 4.1/5 
End Users 27.5 33.8 30.6 3.7/5 

 
The results indicate substantial improvements in decision-making quality and response 

times across all stakeholder groups, with project managers showing the highest benefits from 
the implementation. 

 
Risk Mitigation Effectiveness 

The implementation of the machine learning model demonstrated significant improvements 
in risk mitigation effectiveness across various risk categories. Table 7 presents the comparative 
analysis of mitigation effectiveness between traditional and ML-based approaches. 
 
Table 7. Comparative analysis of risk mitigation effectiveness 

Risk Type Traditional 
Success Rate (%) 

ML-Based 
Success Rate (%) 

Time to 
Mitigation (days) 

Cost 
Reduction (%) 

Resource 
Efficiency (%) 

Technical 65.3 84.7 12.4 18.7 23.4 
Financial 62.8 82.3 14.2 21.5 25.8 
Schedule 58.9 79.8 15.7 16.9 20.3 
Resource 61.2 81.5 13.8 19.2 24.1 
Safety 67.4 86.2 11.3 22.4 26.7 

Source: 
 
The ML-based approach showed consistent improvement across all risk types, with 

particularly strong performance in safety risk mitigation, achieving an 86.2% success rate 
compared to 67.4% with traditional methods. 
 
Geographic Performance Analysis 

The model's performance was evaluated across different geographic regions to assess its 
adaptability to various construction environments. Table 8 summarizes these regional 
performance metrics. 
 
Table 8. Model performance metrics by geographic region 
Region Prediction Accuracy 

(%) 
Adaptation Time 
(weeks) 

Local Factor Integration 
(%) 

Regional Variance 
(%) 

North 
America 88.4 3.2 92.3 4.2 

Europe 86.7 3.8 89.7 5.1 
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Asia Pacific 85.2 4.5 87.4 5.8 
Middle East 84.9 4.7 86.8 6.2 
South 
America 83.5 5.1 85.2 6.7 

 
The analysis reveals strong performance across all regions, with slightly higher accuracy in 

North American projects, potentially due to more standardized data collection practices and 
regulatory frameworks. 
 
Long-term Performance Stability 

The model's performance stability was assessed over an extended period to evaluate its 
reliability and consistency. Table 9 presents the long-term stability metrics. 
 
Table 9. Long-term performance stability metrics 
Time Period Accuracy Drift (%) Recalibration Frequency Maintenance Hours Update Success Rate 

(%) 
Month 1-3 0.4 None 12.4 98.7 
Month 4-6 0.7 1 18.2 97.5 
Month 7-9 1.2 1 22.8 96.8 

Month 10-12 1.8 2 28.5 95.9 
 
The results demonstrate strong stability with minimal accuracy drift over time, requiring 

only occasional recalibration to maintain performance levels above 95%. 
 
Project Scale Impact Analysis 

The effectiveness of the ML-based risk prediction model was analyzed across different 
project scales to assess its scalability. Table 10 presents the performance metrics across various 
project sizes. 
 
Table 10. Model performance analysis by project scale 
Project Size 
($M) 

Risk Detection 
Rate (%) 

Processing 
Time (s) 

Accuracy 
Variance (%) 

Implementation 
Success (%) 

Cost 
Efficiency (%) 

50-100 89.2 0.8 2.3 94.5 15.7 
101-500 87.8 1.2 2.8 92.8 13.9 
501-1000 86.5 1.7 3.2 91.2 12.4 
1001-1500 85.3 2.1 3.7 89.7 11.8 
1501-2000 84.7 2.4 4.1 88.5 10.9 

 
The analysis reveals slightly better performance in smaller projects, with gradually 

decreasing but still robust performance as project scale increases. 
 
Risk Pattern Recognition 

The model demonstrated sophisticated capabilities in recognizing complex risk patterns and 
their interconnections. Table 11 summarizes the pattern recognition performance metrics. 
 
Table 11. Risk pattern recognition performance metrics 
Pattern Type Recognition Rate 

(%) 
False Detection 

Rate (%) 
Lead Time 

(days) 
Pattern 

Complexity Score 
Intervention 
Success (%) 

Sequential 86.7 7.2 18.4 3.8/5 82.3 
Concurrent 84.2 8.5 16.7 4.2/5 79.5 
Cascading 82.8 9.1 15.2 4.5/5 77.8 
Cyclical 81.5 9.8 14.8 4.7/5 76.2 
Random 78.9 11.2 13.5 4.9/5 73.4 
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The results indicate strong performance in recognizing sequential risk patterns, with 

gradually decreasing effectiveness as pattern complexity increases. 
 
Model Adaptability Analysis 

The adaptability of the model to various project conditions and changes was evaluated 
through multiple metrics. Table 12 presents the adaptability performance results. 
 
Table 12. Model adaptability performance metrics 

Adaptation 
Scenario 

Response Time 
(hrs) 

Accuracy 
Recovery (%) 

Integration 
Success (%) 

Resource 
Impact (%) 

Stability Period 
(days) 

Scope Changes 24.3 94.2 88.7 8.4 15.2 
Team Changes 18.7 95.8 90.2 6.7 12.8 

Process Changes 22.1 93.5 87.9 9.2 14.5 
Technology 

Updates 28.4 92.1 86.4 11.3 18.7 

External Factors 32.8 90.7 84.8 13.8 21.4 
 
The model demonstrated strong adaptability across various scenarios, with particularly 

efficient response to team changes and robust recovery of prediction accuracy. 
 
Resource Optimization Impact 

The implementation of the ML-based risk prediction model showed significant 
improvements in resource allocation and utilization across projects. Table 13 presents the 
detailed analysis of resource optimization impacts. 

 
Table 13. Resource optimization impact analysis results 
Resource 
Type 

Utilization 
Improvement (%) 

Waste 
Reduction (%) 

Cost Savings 
($K) 

Efficiency Gain 
(%) 

Planning 
Accuracy (%) 

Labor 23.4 18.7 456.8 21.3 87.4 
Equipment 25.7 22.3 534.2 24.8 89.2 
Materials 19.8 16.5 389.5 18.9 85.7 
Time 21.5 19.4 423.7 20.6 86.3 
Budget 24.2 21.8 512.3 23.5 88.5 

 
The analysis reveals substantial improvements across all resource categories, with 

equipment utilization showing the highest optimization impact at 25.7% improvement. 
 
Operational Efficiency Metrics 

The operational impact of the model implementation was measured across various project 
management aspects. Table 14 summarizes these operational efficiency metrics. 
 
Table 14. Operational efficiency improvements after model implementation 
Operation 
Category 

Time Reduction 
(%) 

Error Reduction 
(%) 

Process Improvement 
(%) 

Decision Speed 
(%) 

Quality 
Score 

Risk Assessment 34.2 42.7 38.5 45.3 4.2/5 

Planning 31.5 39.4 35.7 41.8 4.0/5 
Execution 28.7 36.2 32.4 38.5 3.9/5 
Monitoring 32.8 40.5 36.9 43.2 4.1/5 
Reporting 29.4 37.8 33.6 39.7 3.8/5 
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The results demonstrate significant improvements in operational efficiency, particularly in 
risk assessment and monitoring processes. 
 
Final Model Validation Results 

The comprehensive validation of the model's performance across all key metrics is 
presented in Table 15, representing the culmination of all testing phases. 
 
Table 15. Final model validation results across key performance indicators 
Performance Indicator Target Value Achieved Value Variance (%) Confidence Level 

(%) 
Stability 
Score 

Overall Accuracy 85.0% 87.3% +2.3 95.2 0.924 
Risk Detection 80.0% 84.5% +4.5 94.7 0.913 
False Positives <10.0% 8.2% -1.8 96.3 0.935 
Processing Speed <2.0s 1.4s -0.6 97.1 0.942 
Cost Effectiveness >15.0% 18.7% +3.7 93.8 0.906 

 
The final validation results demonstrate that the model exceeded target values across all key 

performance indicators, with particularly strong performance in processing speed and false 
positive reduction. 

The machine learning-based risk prediction framework, when applied to large-scale 
infrastructure construction projects, shows considerable improvement compared to traditional 
risk management methods. The GBDT model achieves an overall accuracy of 87.3% across 
various risk categories, a notable increase in the ability to predict construction risks. This 
surpasses the 65-75% accuracy rates reported in earlier studies that used conventional statistical 
methods (Garcia et al., 2022). 

The model's enhanced performance in early risk detection, increasing from 45% to 78%, is 
consistent with recent findings. Sanni-Anibire et al. (2022) highlighted the crucial role of early 
risk identification in urban infrastructure projects. Despite this, the current study attained higher 
detection rates. This is considered to be a result of integrating PCA-based feature selection and 
advanced GBDT algorithms, whereas their neural network-based approach achieved 65% early 
detection rates. 

A notable finding is the model's ability to identify and forecast environmental risks, 
achieving an accuracy of 86.8%. This level of performance fills a crucial gap noted by Alvand 
et al. (2023), who pointed out the difficulties in measuring environmental risk factors within 
urban construction projects. The model's success is considered to stem from a thorough feature 
engineering approach, one that integrated various environmental parameters and their interplay. 

The research observed that prediction accuracy was higher in the initial phases of a project 
(88.7% at 0-25% completion) and somewhat lower in later stages (83.8% at 76-100% 
completion). This pattern highlights a key aspect of how machine learning can be applied to 
construction risk management. While Cardellicchio et al. (2023) theorized that risk interactions 
become more complex as projects advance, the current study, despite this, maintained relatively 
high accuracy throughout the project lifecycle. 

A cost-benefit analysis within the study indicated an average ROI of 68.9% across all 
implementation categories. This ROI is notably higher than the 30-40% range found in earlier 
research (Ashtari et al., 2022). The model's enhanced prediction accuracy and lower false 
positive rate could be contributing factors to this improved financial performance. These 
improvements might allow for more efficient resource allocation and better risk mitigation 
strategies. 

The study has some limitations that are worth mentioning. The dataset, while including 220 
projects, mainly focused on those from developed urban areas. This focus could restrict the 
model's applicability to projects in developing regions or rural environments. Despite this, the 
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temporal validation, which covered 20% of the most recent projects, might not fully represent 
long-term shifts in risk patterns and project specifics. 

Geographic performance analysis indicated marginally reduced accuracy rates in regions 
beyond North America (83.5-86.7% versus 88.4%). This difference suggests that further 
investigation into regional adaptation mechanisms may be beneficial. The variation could be 
due to differing data collection standards and regulatory frameworks, as observed by Phillips 
and Chang (2024). 

The model's dependence on structured project data presents another constraint. Such data 
might not fully represent the informal communication and tacit knowledge that seasoned project 
managers frequently employ in risk assessment. It is considered that future research could 
explore methods of integrating qualitative data and expert knowledge into the machine learning 
framework. The objective is to maintain prediction capabilities. 

Future research can explore several directions. Integrating real-time sensor data and IoT 
devices might improve the model's capacity to identify developing risks, especially concerning 
environmental and safety aspects. Developing transfer learning approaches could also boost the 
model's performance in areas where historical project data is scarce. Furthermore, investigation 
into explainable AI techniques could help make the risk predictions easier to understand for 
project stakeholders. This addresses a frequent critique of machine learning applications within 
construction management. 

5. CONCLUDING 
The implementation of machine learning-based risk prediction frameworks for large-scale 

infrastructure construction projects has provided insights into their potential effectiveness in 
construction risk management. Based on empirical evidence across 220 projects, the following 
key findings emerged: 

The implemented GBDT model demonstrated a high level of accuracy in risk prediction, 
achieving an overall accuracy of 87.3% across all categories. This represents a 23% 
improvement over traditional statistical methods. This enhanced performance was particularly 
noticeable in technical risk prediction (89.4% accuracy) and financial risk assessment (88.1% 
accuracy), indicating the model's strength in managing complex risk patterns. 

The model's ability to detect risks early was significantly improved. It achieved an 82.4% 
detection rate during the planning phase, while maintaining a low false alarm rate of 8.3%. This 
early warning capability can be linked to an average cost savings of 14.8% during the planning 
phase, highlighting the substantial financial advantages of proactive risk management. 

The model demonstrated consistent performance across various project types. Prediction 
accuracy spanned from 85.4% for utility infrastructure to 88.5% for urban tunnel projects. This 
stability across different infrastructure categories confirms the framework's adaptability and 
wide-ranging use within the construction sector. 

Using the ML method to optimize resources led to significant improvements. Equipment 
utilization showed the most improvement, increasing by 25.7%, which resulted in cost savings 
of $534,200. Additionally, waste reduction was also seen, ranging from 16.5% to 22.3% for 
different resource types. 

Geographic analysis indicated substantial yet varied performance across regions. For 
example, North American projects reached 88.4% accuracy, whereas South American projects 
achieved 83.5%. This regional difference underscores the significance of incorporating local 
factors in risk prediction models. Adaptation times are considered to vary from 3.2 to 5.1 weeks 
across different regions. 

The long-term stability analysis showed a small accuracy drift (1.8% over 12 months), 
suggesting the model can be reliably used for a long time. Risk assessment processes showed 
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significant operational efficiency improvements, the time needed was 34.2% lower, and errors 
decreased by 42.7%. 

These results confirm that machine learning applications can be viable and effective in 
construction risk management. They offer a data-driven way to improve project outcomes. The 
framework successfully combines predictive accuracy with practical use. This provides a basis 
for future advances in construction risk management technology, potentially changing how the 
industry handles risk assessment and mitigation. 
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