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Resumo. Muitos problemas do mundo real envolvem a tomada de decisões. Tais cenários se baseiam em 
medidas de custo ou desempenho para avaliar a qualidade das soluções, e são frequentemente modelados como 
problemas de otimização. Sua solução consiste na formulação matemática do problema e, em alguns casos, na 
adoção de algoritmos heurísticos. Este trabalho apresenta um estudo de caso que aplica programação 
matemática e a metaheurística iterated greedy para resolver um problema de planejamento urbano em um 
campus universitário. Para isso, o cenário foi modelado como o problema das p-medianas capacitado e foram 
geradas diferentes instâncias. Os resultados mostram que a abordagem exata é capaz de resolver instâncias 
pequenas, enquanto o iterated greedy fornece boas soluções para instâncias maiores. Além disso, a 
metaheurística produz soluções de alta qualidade em tempo menor que o método exato, demonstrando sua 
viabilidade para cenários reais de planejamento urbano. 
 
Palavras-chave: problema das p-medianas; programação linear inteira; metaheurísticas 
 
Abstract. Many real-world problems involve decision-making. Such scenarios rely on cost or performance 
measures to assess the quality of solutions and are often modeled as optimization problems. Their solution 
involves the mathematical formulation of the problem and, in some cases, the adoption of heuristic algorithms. 
This study presents a case study that applies mathematical programming and the iterated greedy metaheuristic to 
solve a urban planning problem in a university campus. To this end, the scenario was modeled as the capacitated 
p-median problem and different instances were generated. The results indicate that the exact approach is capable 
of solving small instances, while the iterated greedy provides good solutions for larger instances. Moreover, the 
metaheuristic produces high-quality solutions in less time than the exact method, demonstrating its feasibility 
for real-world urban planning scenarios. 
 
Keywords: p-medians problem; integer linear programming; metaheuristics 

1. INTRODUÇÃO 
Algoritmos de inteligência artificial têm se mostrado bastante eficazes no suporte à 

tomada de decisões. Uma abordagem frequentemente adotada é a modelagem via problemas 
de otimização, associada à solução desses problemas usando algoritmos heurísticos. 
Algoritmos de busca local iterativamente aplicam pequenas modificações à solução corrente, 
buscando obter soluções melhores, como o simulated annealing (Kirkpatrick et al., 1983) e a 
busca tabu (Glover, 1986), ou sua combinação com heurísticas construtivas (Feo & Resende, 
1995). Algoritmos bioinspirados se baseiam em fenômenos da natureza para definir a forma 
como o espaço de soluções é explorado, como os algoritmos genéticos (Holland, 1995) e de 
otimização por colônia de formigas (Dorigo et al., 1999). Apesar de não oferecerem garantia 
de otimalidade, essas abordagens são eficazes na produção de boas soluções em tempo 
razoável para vários problemas, como roteamento de veículos (Silva & Resendo, 2023), 
alocação de sondas de produção terrestre (Aloise et al., 2002) e elaboração de horários 
escolares (De Oliveira et al., 2012). 
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Este trabalho apresenta um estudo de caso da aplicação de técnicas de otimização 
combinatória para o planejamento urbano do campus universitário da Universidade do Estado 
de Santa Catarina – Udesc Alto Vale. O campus está passando por obras de reurbanização, e 
muitas decisões devem ser tomadas para o posicionamento de algumas instalações, como 
bebedouros, lixeiras, terminais ou quadros informativos e outros recursos a serem usados pela 
comunidade acadêmica. Este cenário foi modelado como o problema das p-medianas 
capacitado (Hakimi, 1964), uma abordagem clássica para o problema da localização de 
instalações (neste caso, chamadas de medianas). Neste sentido, são definidas as posições de 
cada mediana e a alocação de pontos de demanda a essas medianas. O problema foi 
formulado matematicamente e resolvido usando um solver matemático. Para instâncias 
maiores, o tempo de processamento é impraticável, o que exige a adoção de algoritmos 
heurísticos. Foi implementada a metaheurística iterated greedy (Ruiz & Stüzle, 2007) para a 
solução dessas instâncias. 

Vários exemplos da literatura apresentam a modelagem de cenários de otimização como o 
problema das p-medianas, bem como exploram algoritmos heurísticos para sua solução. 
Vigneron et al. (2000)  buscam pelo posicionamento ideal de proxies de cache em redes de 
computadores, minimizando a soma das distâncias dos nós até o próximo proxy no caminho. 
Mesa et al., (2013) exploram a programação de redes de transporte público, determinando os 
tempos de saída dos veículos para maximizar a satisfação dos usuários. Finalmente, Isler et al. 
(2012) resolvem o problema do planejamento de entregas de peças em um centro de 
distribuição de uma montadora de automóveis usando um algoritmo genético combinado com 
diferentes estratégias de busca local. 

Também são encontrados exemplos na literatura da exploração do problema das p-
medianas para cenários de planejamento urbano. Kocatepe et al. (2018) exploram a 
localização de abrigos públicos para cenários de evacuação após desastres. Os autores 
consideram que pessoas podem apresentar características especiais, como maior tempo de 
evacuação ou espaço para animais de estimação. Song et al. (2018) estudam a acessibilidade 
espacial dos serviços de saúde em uma cidade chinesa, cuja meta é que qualquer cidadão 
consiga acessar os serviços em até 15 minutos de caminhada. O problema das p-medianas foi 
adotado para propor a abertura de novos centros de saúde, para atingir o objetivo proposto. 
Imran et al. (2022) exploram uma generalização do modelo das p-medianas, considerando 
fatores de incerteza nos custos de deslocamento e nas emissões produzidas. A abordagem 
proposta pelos autores também incorpora os impactos ambientais da seleção de medianas na 
tomada de decisões. 

Alguns trabalhos focam no planejamento urbano em cenários relacionados à educação. 
Em geral, eles estudam a melhor localização de escolas, com o objetivo de reduzir os tempos 
de deslocamento dos estudantes e, por consequência, minimizar desigualdades quanto ao 
acesso à educação. No Brasil, esse tipo de estudo foi realizado nas cidades de Vitória/ES 
(Barcelos et al., 2004), Rio de Janeiro/RJ (Menezes & Pizzolato, 2014) e Curitiba/PR (Endler 
et al., 2017). Nesses trabalhos, além de encontrar a localização ideal de escolas, o problema 
das p-medianas foi explorado para analisar a situação da região, estudando as deficiências 
atuais, o impacto do aumento da capacidade das escolas e potenciais benefícios com a 
implantação de novas escolas. Esses exemplos demonstram o potencial de técnicas baseadas 
no problema das p-medianas na solução de problemas de planejamento urbano. 

Entre os trabalhos que aplicam o problema das p-medianas para planejamento urbano, 
Imran et al. (2022) foram os únicos que exploraram métodos heurísticos de solução. Os 
autores usaram a metaheurística VNS (Variable Neighborhood Search) integrada a técnicas 
de simulação de Monte Carlo. Todos os demais adotaram métodos exatos baseados em 
modelagem matemática ou algoritmos de geoprocessamento. Este trabalho apresenta uma 
aplicação ainda não explorada em ambiente educacional, que consiste no posicionamento de 
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instalações em um campus universitário. Além disso, são adotados tanto métodos exatos 
quanto heurísticos. A metaheurística escolhida (iterated greedy) é pouco explorada em 
problemas de localização de instalações, incluindo o problema das p-medianas. Este trabalho 
ainda compara o desempenho das abordagens exata e heurística na solução do problema das 
p-medianas aplicado ao planejamento urbano. 

Este trabalho está organizado da seguinte forma. A Seção 2 apresenta o cenário de 
planejamento urbano do campus, sua modelagem via problema das p-medianas capacitado e 
o algoritmo iterated greedy proposto. A Seção 3 apresenta os experimentos computacionais, 
seus resultados e uma discussão sobre as soluções obtidas. A Seção 4 apresenta as 
considerações finais do trabalho e direções para trabalhos futuros. 

2. ABORDAGEM PROPOSTA 
A reurbanização do campus da Udesc Alto Vale prevê diversas melhorias no 

estacionamento, nas estruturas de convivência, na biblioteca e nos espaços para os setores 
administrativos. Além disso, inclui o cerceamento do entorno e a modernização da atual 
fachada. Se faz necessário alocar recursos de maneira estratégica, de modo a atender a 
demanda da comunidade acadêmica da melhor forma possível. Isso inclui a determinação do 
posicionamento de instalações, como terminais digitais de informações que ficarão à 
disposição de servidores, estudantes e visitantes. A Figura 1 mostra o projeto tridimensional 
das obras que estão sendo realizadas, onde são apresentados parte da fachada, o 
estacionamento e a arborização previstos. 

 

Figura 1. Projeto de reurbanização do campus universitário. 
Fonte: Elaborada pela Udesc Alto Vale (2024). 

 
Para a modelagem do problema, o campus foi mapeado para um conjunto de pontos, cada 

qual com uma demanda que corresponde ao número de pessoas que o frequentam (ou estão 
posicionadas próximas a ele). Deseja-se instalar um número predeterminado de terminais 
digitais de informação, os quais possuem uma capacidade diária de atendimento. Os mesmos 
pontos de demanda são usados como locais potenciais de instalação de terminais. Dessa 
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forma, deseja-se definir a posição de instalação de cada terminal, e alocar cada ponto de 
demanda a um terminal, respeitando sua capacidade de atendimento. 

Para realizar o estudo, foram criadas instâncias com base no mapa do campus apresentado 
na Figura 2. O gerador de instâncias recebe como parâmetro o número de linhas e colunas n e 
projeta n × n pontos sobre o mapa do campus (círculos azuis sobre a Figura 2). Esses pontos 
correspondem a potenciais locais de instalação de terminais, bem como pontos de demanda 
(pessoas). É definida a distância entre cada par de pontos {i, j} segundo a distância de 
Manhattan, dada por d(i, j) = |xi – xj| + |yi – yj| , onde x e y são as coordenadas em metros do 
respectivo ponto no mapa. 

A demanda de cada ponto é determinada conforme sua localização. A Figura 2 define 
áreas de alta demanda (retângulos contínuos vermelhos), de média demanda (retângulo 
tracejado verde) e de baixa demanda (áreas restantes). Dado o valor da demanda total (igual a 
500 pessoas no estudo realizado), 50% dela é distribuída de maneira uniforme entre os pontos 
de alta demanda, 30% entre os pontos de média demanda, e 20% entre os pontos de baixa 
demanda. A capacidade dos terminais foi definida como a demanda total dividida pelo 
número de terminais e multiplicada por 1,7. Essa distribuição reflete a dinâmica 
comportamental observada no cenário real. Cabe destacar que a distribuição da demanda é 
um passo importante na modelagem do problema, tendo em vista que os algoritmos tendem a 
favorecer o posicionamento de instalações em locais mais próximos a regiões de alta 
demanda. A modificação na distribuição da demanda, portanto, altera as soluções ótimas (ou 
de maior qualidade) e implica na necessidade de nova execução do algoritmo. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 2. Mapa do campus com a definição das áreas de alta, média e baixa demandas e o 
mapeamento de 49 pontos. 

Fonte: Elaborada pelos autores. 

2.1 Formulação matemática 
O problema das p-medianas (Hakimi, 1964) é bastante explorado na área de otimização, 

sendo encontrado nos mais diversos cenários de tomada de decisão. Sua proposta é 
determinar a localização de p instalações, chamadas de medianas, e alocar pontos de 
demanda a essas medianas, de modo que o somatório da distância de cada ponto à sua 
mediana seja minimizado. Neste estudo, o problema das p-medianas é abordado na sua forma 
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capacitada. Isso significa que cada mediana possui uma capacidade específica e todos os 
pontos contêm uma demanda que deve ser atendida. Dito isso, as medianas devem ser 
capazes de atender a demanda dos pontos alocados a ela, respeitando sua capacidade. Para a 
modelagem do problema do planejamento urbano do campus via o problema das p-medianas 
capacitado, são definidos os parâmetros e variáveis de decisão a seguir. 

 
Parâmetros:  

  P : conjunto de pontos, 
  p : número de medianas, 
 dij : distância entre os pontos, 
 Di : demanda associada ao ponto, 
 C : capacidade (única) das medianas. 
 

Variáveis: 
xi ∈ {0, 1} indica se o ponto i é uma mediana. 
yij ∈ {0, 1} indica se o ponto i é alocado à mediana j. 
 
Com base nos parâmetros, definidos pela instância a ser resolvida, e nas variáveis de 

decisão descritas acima, o problema das p-medianas capacitado para planejamento urbano do 
campus pode ser modelado como 

 

minimiza  ∑ 𝑑!"!,"∈% 𝑦!",  (1) 

sujeito a  ∑ 𝑥!!∈% =𝑝,  (2) 

  ∑ 𝑦!""∈% =1, ∀𝑖 ∈ 𝐼, (3) 

  ∑ 𝐷!"!∈% ≤ 𝐶𝑥", ∀𝑖, 𝑗 ∈ 𝑃, (4) 

  𝑥! ∈ {0,1}, ∀𝑖 ∈ 𝑃, (5) 

  𝑦!" ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑃. (6) 

 
A função objetivo (1) calcula a distância total entre cada ponto e sua mediana associada e 

deve ser minimizada. A restrição (2) determina que devem ser definidas exatamente p 
medianas (ou terminais). A restrição (3) estabelece que cada ponto seja atendido por 
exatamente uma mediana. Ou seja, não pode haver ponto não atendido, e nenhum ponto pode 
ser atendido por mais de uma mediana. A restrição (4) assegura que a demanda total 
associada a uma mediana não supere sua capacidade. Por fim, as restrições (5) e (6) definem 
as variáveis de decisão e seus domínios. 

A restrição de capacidade (4) confere maior complexidade ao problema, em comparação 
com sua versão não capacitada. Neste caso, as demandas são alocadas às medianas conforme 
sua capacidade de atendimento, resultando em uma topologia mais complexa do espaço de 
soluções e dificultando sua exploração. Nos casos em que a capacidade total de atendimento 
é muito restritiva (isto é, baixa capacidade e poucas medianas), pode não haver solução viável, 
por não ser possível alocar todos os pontos de demanda, violando a restrição (3). 
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2.1 Algoritmo iterated greedy 
Uma vez formulado matematicamente, o problema pode ser resolvido usando um solver 

matemático. Para instâncias maiores, no entanto, o solver pode demorar para encontrar a 
solução ótima e se tornar inviável na prática. Para lidar com essas instâncias, este trabalho 
explora a metaheurística iterated greedy (IG) proposta por (Ruiz & Stützle, 2007). O IG 
explora o espaço de soluções ao destruir parte da solução atual e a reconstruir. O algoritmo 
pode ser combinado com uma busca local para refinamento das soluções construídas. 

O Algoritmo 1 apresenta o pseudocódigo do IG proposto. Inicialmente, o algoritmo gera 
uma solução inicial aleatória (linha 1). Por I iterações, a solução atual é parcialmente 
destruída e, em seguida, ela é reconstruída (linhas 7 e 8). O tamanho da destruição é dado 
pelos parâmetros d1 e d2. A aleatoriedade da construção é dada pelos parâmetros α e β. 
Opcionalmente, a busca pode ser reiniciada quando identificada estagnação (linhas 4 a 6). O 
IG pode também ser combinado com uma busca local para melhorar a solução recém 
construída (linhas 9 a 11). Finalmente, uma solução é escolhida para a próxima iteração da 
busca (linha 15). 

 
Algoritmo 1. Pseudocódigo do algoritmo IG (iterated greedy). 
1:  S ← SoluçãoAleatória() 
2:  S* ←  S 
3:  para i ← 1 até I faça 
4: se reinício está ativado e a busca está estagnada então 
5:  S ← SoluçãoAleatória() 
6: fim se 
7: S’ ← Destrói(S, d1, d2)  
8: S’ ← Constrói(S’, α, β)  
9: se busca local está ativada então 
10:  S’ ← BuscaLocal(S’)  
11: fim se  
12: se S’ é melhor que S* então 
13:  S* ← S 
14: fim se  
15: S ← Aceita(S’, S*) 
16:  fim para 
17:  retorna S* 

 
Construção. A construção de uma solução aleatória (SoluçãoAleatória) consiste em 

escolher p pontos aleatoriamente para as medianas e, para cada ponto não escolhido, uma 
mediana com capacidade disponível é atribuída a ele, também escolhida aleatoriamente. Por 
outro lado, a reconstrução de soluções (Constrói) aplica uma heurística semi-gulosa. 
Enquanto o número de medianas não é atingido, essa heurística seleciona um ponto como 
mediana e aloca a ela outros pontos até que sua capacidade não permita mais alocação. Para a 
escolha de medianas, os pontos são ranqueados conforme sua distância para os demais pontos 
ainda não alocados a medianas, e um dos α melhores candidatos é escolhido aleatoriamente. 
Para alocar pontos à mediana recém definida, os pontos ainda não alocados são ranqueados 
conforme sua distância para a mediana. Enquanto a mediana ainda possui capacidade 
disponível, um dos β melhores candidatos é escolhido aleatoriamente e alocado à mediana. 

 
Destruição. Para essa fase existem duas opções: aleatória ou guiada. Na destruição 

aleatória, d1 ⸱ p medianas são escolhidas aleatoriamente e removidas da solução, desalocando 
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também os pontos atribuídos a ela. Além disso, uma segunda etapa desaloca d2 ⸱ |P| pontos da 
sua respectiva mediana. Na destruição guiada, a probabilidade de escolha das medianas é 
proporcional à sua capacidade ociosa, enquanto a probabilidade de escolha de pontos a 
desalocar é proporcional à sua demanda. Ou seja, medianas ociosas tem maior capacidade de 
serem removidas da solução, bem como pontos de alta demanda. 

 
Busca local. Trata-se de uma busca local simples (monótona) com estratégia de primeira 

melhoria para seleção de soluções vizinhas. A vizinhança é definida pela troca de mediana de 
um ponto a outro, com a consequente desalocação dos pontos atribuídos à mediana antiga, e a 
alocação de pontos à nova mediana. Todas as combinações de troca de medianas são 
consideradas para gerar a vizinhança, porém a alocação de novos pontos é aleatória. A 
primeira solução vizinha encontrada com melhor valor de função objetivo é escolhida para a 
próxima iteração (primeira melhoria), e o processo se repete até que não haja solução vizinha 
melhor. 

 
Aceitação. Duas estratégias de aceitação foram definidas: atual e incumbente. A primeira 

sempre escolhe a solução da iteração atual para a próxima iteração, i.e. a solução S' do 
Algoritmo 1. A segunda estratégia continua a busca sempre a partir da solução incumbente, 
i.e. a melhor solução encontrada até o momento (S* no Algoritmo 1). 

 
A Tabela 1 apresenta os componentes algorítmicos e parâmetros do algoritmo IG, 

juntamente com seus possíveis valores. Conforme detalhado na Seção 3, serão exploradas 
técnicas para a configuração automática do algoritmo IG, buscando a melhor combinação de 
componentes e valores dos parâmetros. Essa abordagem permite a construção automática de 
algoritmos IG para o problema do planejamento urbano do campus. Ou seja, ao modificar 
características das instâncias (e.g. novas medidas de distância ou diferentes estratégias para 
definição dos pontos, capacidades e demandas), basta configurar o algoritmo novamente para 
obter sua versão de melhor desempenho no novo cenário. 

 
Tabela 1. Componentes e parâmetros usados pelo algoritmo IG. 
Elemento Descrição Valores 
Destrói Destruição parcial da solução {aleatória, guiada} 
Aceita Estratégia de aceitação da solução {atual, incumbente} 
R Habilita o reinício após estagnação {sim, não} 
B Habilita a busca local {sim, não} 
r Estratégia de detecção de estagnação [0, 1] 
d1 Define o número de medianas removidas [0, 1] 
d2 Define o número de alocações removidas [0, 1] 
α Aleatoriedade do posicionamento de medianas [0, 1] 
β Aleatoriedade da alocação de medianas [0, 1] 
Fonte: Elaborada pelos autores. 

3. EXPERIMENTOS E RESULTADOS 
Esta seção apresenta os experimentos e resultados obtidos pela execução exata e 

heurística do problema de planejamento urbano do campus via problema das p-medianas 
capacitado. A modelagem matemática foi implementada usando e executada usando Python 
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3.12, pyomo (Byum et al., 2021; Hart et al., 2011) e o solver GLPK (GNU Linear 
Programming Kit) na versão 4.65. Os experimentos foram executados em um único núcleo de 
processamento de uma máquina com processador Intel Core i5 e 8GB de memória, 
executando sistema operacional Windows 11. 

Para os experimentos, foram geradas instâncias com {25, 49, 80, 90, 100} pontos e {5, 7}, 
{9, 14}, {16, 24}, {18, 27} e {20, 30} medianas para cada tamanho, respectivamente. A 
demanda total é de 500 pessoas para todas as instâncias, e a capacidade das medianas é 
definida como C = 1,7 ⸱ (500 / p). Essas instâncias refletem a localização dos prédios do 
campus e a distribuição da demanda nesse espaço, se caracterizando como uma aproximação 
adequada do cenário real para a modelagem do problema. 

Os componentes e parâmetros do IG foram definidos automaticamente usando técnicas de 
configuração de algoritmos. Em particular, o configurador irace (López-Ibáñez et al., 2016) 
foi usado para essa tarefa, encontrando uma versão do IG com desempenho otimizado. Foram 
usadas instâncias de treinamento com as mesmas características das instâncias construídas 
(i.e. distribuição da demanda, capacidade, métrica de distância). O processo de configuração 
pode ser repetido para cenários com características diferentes, maximizando o desempenho 
do algoritmo IG para novos contextos. O algoritmo configurado pelo irace usa os 
componentes de destruição guiada e de aceitação da solução incumbente, e os parâmetros R = 
{não} (sem reinício), B = {sim} (com busca local), α = 0,76, β = 0,14, d1 = 0,03 e d2 = 0,01 
(veja Tabela 1). Esses valores mostram uma aleatoriedade alta no posicionamento de 
medianas (escolhe aleatoriamente entre os α = 76% melhores candidatos), e baixa na 
alocação de pontos (escolhe aleatoriamente entre os β = 14% melhores candidatos). A 
destruição é pequena nas duas etapas, o que indica que o IG adotado possui perturbação 
pequena e produz boas soluções pela etapa construtiva e, principalmente, de busca local. 

O solver foi executado com um tempo limite de 1 hora (3600 segundos). O IG foi 
executado por I = 5000 iterações (além do mesmo critério de terminação por tempo que 
nunca foi atingido) e 10 replicações. A Tabela 2 mostra o valor das soluções encontradas pelo 
solver (MIP, de Mixed Integer Programming ou Programação Inteira Mista) e o tempo de 
execução para cada instância. Para o IG, são apresentados os valores das melhores soluções 
encontradas para cada instância nas 10 replicações, bem como a média dos valores das 
soluções encontradas nessas replicações e o tempo médio de execução. Os melhores valores 
para cada instância estão apresentados em negrito, e os valores ótimos para cada instância são 
apresentados sublinhados. 

Observa-se que a abordagem exata (MIP) conseguiu alcançar a solução ótima em 4 das 10 
instâncias no tempo limite de 1 hora de execução. Para as instâncias maiores (com 80 ou mais 
pontos), o solver retornou apenas soluções viáveis, sem garantir a otimalidade. Tal situação 
resulta do crescimento do espaço de soluções devido ao aumento no número de combinações, 
somado a limitações do solver, como a falta de cortes eficientes. Seu desempenho pode ser 
melhorado pela exploração de técnicas adicionais, como a geração de uma solução inicial 
viável e com boa qualidade ou uso de planos de corte. O algoritmo IG, por outro lado, ainda 
que tenha alcançado o valor ótimo em somente 2 das 10 instâncias, conseguiu produzir 
soluções melhores que o solver nos casos onde a solução ótima não foi alcançada. Além disso, 
o IG consegue encontrar soluções melhores nessas instâncias em um tempo expressivamente 
menor. Esses resultados indicam que o algoritmo IG é uma abordagem viável para a solução 
do problema das p-medianas e sua aplicação no planejamento urbano do campus, 
especialmente em instâncias grandes, mais complexas e mais próximas do cenário real, onde 
soluções ótimas se tornam inviáveis por conta da limitação de tempo ou de recursos 
computacionais. 
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Tabela 2. Valores obtidos pelos métodos exato e heurístico e tempos de execução para solução das 
instâncias construídas. 

Instância  MIP  IG 

|P| p  valor tempo  melhor média tempo 

25 5  1100 0,26  1100 1132,2 29,33 

25 7  878 0,57  878 906,9 33,34 

49 9  1518 10,25  1532 1579,1 237,65 

49 14  1072 5,84  1108 1144,7 331,91 

80 16  1880 3600,00  1868 1932,0 1055,64 

80 24  1646 3600,00  1529 1562,9 1082,65 

90 18  2001 3600,00  1955 2046,3 1306,76 

90 27  1797 3600,00  1627 1665,0 1269,32 

100 20  2064 3600,00  2106 2156,0 1771,26 

100 30  1776 3600,00  1700 1723,2 2013,79 
Fonte: Elaborada pelos autores. 

 
Para entender a estrutura e características das soluções produzidas pelos métodos 

propostos, foram geradas representações gráficas das soluções, mostrando os pontos 
mapeados, as áreas de alta, média e baixas demandas, as posições das medianas e a alocação 
dos demais pontos às medianas. As Figuras 3 e 4 apresentam as melhores soluções 
encontradas para as instâncias {49, 9} e {100, 20}, respectivamente. Os pontos são 
representados pelos círculos azuis menores, enquanto as medianas são representadas pelos 
círculos vermelhos maiores. A alocação é representada pela conexão entre pontos e medianas 
por meio das linhas tracejadas. As áreas de alta e média demandas são mostradas pelos 
retângulos em vermelho (linhas contínuas) e verde (linhas tracejadas), respectivamente. 
Todas as demais áreas são de baixa demanda. 

Pode-se perceber que as soluções apresentam medianas posicionadas nas áreas de maior 
demanda (dentro das áreas destacadas). Essas medianas são importantes, pois reduzem a 
distância percorrida pelas pessoas associadas a esses pontos, que são em maior número 
comparado aos demais. Mesmo assim, observa-se uma boa distribuição das medianas ao 
longo da área total do campus. É possível atender a todos os pontos com medianas próximas, 
i.e. não é necessário percorrer grande distância a partir de qualquer ponto e nenhum deles fica 
desatendido. Em casos onde áreas menos densas fiquem isoladas, i.e. atendidas por medianas 
muito distantes, é possível incluir uma restrição de distância máxima para alocação. Com isso, 
é assegurada a equidade no atendimento e a acessibilidade a usuários com mobilidade 
reduzida. Em resumo, essas visualizações permitem entender a estrutura das soluções obtidas, 
confirmando a viabilidade das abordagens propostas e fomentando a tomada de decisões 
nesse domínio de aplicação. 
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Os resultados apresentados demonstram consistência com os achados da literatura sobre a 
aplicações do problema das p-medianas em cenários de planejamento urbano. Tal como 
reportado por Kocatepe et al. (2018), a modelagem proposta permite a alocação eficiente de 
recursos para atender diferentes demandas, embora este trabalho foque no planejamento de 
um campus universitário, e não considere cenários de evacuação. Similar ao trabalho de Song 
et al. (2018), observou-se que a localização estratégica das medianas reduz as distâncias 
percorridas pelos usuários, promovendo maior acessibilidade aos serviços. Além disso, a 
metaheurística iterated greedy mostrou-se eficaz em resolver instâncias maiores em tempo 
reduzido, o que está alinhado à proposta de Imran et al. (2022) para a solução de problemas 
complexos, ainda que sem considerar explicitamente incertezas nos custos, impactos 

 
 

Figura 3. Melhor solução produzida para a instância com 49 pontos e 9 medianas.  
Fonte: Elaborada pelos autores.  

 
 

 
 

Figura 4. Melhor solução produzida para a instância com 100 pontos e 20 medianas.  
Fonte: Elaborada pelos autores. 
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ambientais ou características adicionais. Em comparação com pesquisas de planejamento 
escolar no Brasil (Barcelos et al., 2004; Menezes & Pizzolato, 2014; Endler et al., 2017), as 
soluções encontradas neste trabalho também indicam benefícios na distribuição equilibrada 
de recursos e na minimização das distâncias de deslocamento, evidenciando o potencial do 
modelo de p-medianas para suporte a decisões de planejamento urbano em diferentes 
contextos. 

4. CONSIDERAÇÕES FINAIS 
Este estudo explora a aplicação do problema das p-medianas capacitado para o 

planejamento urbano do campus de uma universidade. Foram geradas instâncias que 
modelam o cenário encontrado no campus. O problema foi formulado matematicamente e 
resolvido usando um solver matemático. Além disso, foi implementada a metaheurística 
iterated greedy que, apesar de não garantir a otimalidade das soluções produzidas, é capaz de 
encontrar boas soluções em tempo razoável para instâncias que o solver não consegue 
resolver no tempo limite determinado. 

Os resultados mostram a eficácia das abordagens exata e heurística na solução do 
problema proposto. As visualizações produzidas para as soluções encontradas fornecem 
recursos para analisar a estrutura e as características dessas soluções, e são úteis para a 
tomada de decisões no planejamento do campus. Além disso, a adoção de técnicas de 
configuração automática de algoritmos permite adaptar facilmente o iterated greedy para 
diferentes cenários, como uma nova distribuição de pontos e suas demandas, obtendo uma 
versão do algoritmo com desempenho otimizado para novas realidades. Finalmente, o 
trabalho apresenta diretrizes para a modelagem e solução de problemas de otimização, em 
particular aqueles relacionados à localização de instalações, resolvida através de programação 
matemática e metaheurísticas. 

Cabe destacar as principais limitações da abordagem proposta, especialmente aquelas 
relacionadas à modelagem baseada no problema das p-medianas. Modelos alternativos de 
localização de instalações exploram outras direções, permitindo características adicionais. O 
problema dos p-centros visa minimizar a distância máxima entre pontos de demandas e 
instalações. Já o problema da cobertura máxima define uma distância máxima para 
atendimento e visa maximizar o número de pontos de demanda atendidos. Esses modelos 
permitem buscar por soluções que asseguram a equidade no atendimento entre diferentes 
regiões. Em contrapartida, a modelagem via p-medianas pode desfavorecer regiões de menor 
demanda, fazendo com que esses pontos sejam atendidos por instalações mais distantes em 
comparação com regiões de alta demanda. Além disso, o estudo não considera incertezas que 
podem estar associadas à demanda ou à capacidade das instalações. Também não são 
contemplados cenários dinâmicos em que a disposição espacial de pessoas se altera dentro de 
um período predeterminado de tempo. Aspectos comportamentais, ambientais e de custo de 
implantação também não foram incorporados à modelagem, o que pode restringir a 
aplicabilidade da abordagem proposta em cenários específicos. 

Esta pesquisa pode ser estendida em diferentes direções. A generalização da formulação 
do problema pode permitir a alocação parcial da demanda de um ponto a uma ou mais 
medianas. Essa alteração captura o comportamento típico de pessoas em cenários como a 
busca por um recurso de interesse. Também podem ser incorporados ao modelo 
características adicionais que estejam presentes no cenário real, como a acessibilidade dos 
pontos candidatos, garantindo o acesso aos recursos por pessoas com necessidades especiais, 
o custo de instalação, que pode variar de acordo com o ponto, e uma distância máxima na 
alocação de pontos de demanda a medianas, permitindo somente a alocação dentro de um 
raio pré-determinado. Outros métodos de solução têm potencial de apresentar desempenho 
competitivo com as abordagens propostas. Logo, é interessante conduzir um estudo 
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comparativo do algoritmo iterated greedy com outros métodos heurísticos, como algoritmos 
genéticos, simulated annealing, GRASP e VNS. Além disso, o estudo e aplicação propostos 
neste trabalho serão aprofundados, a fim de comparar as soluções produzidas pelos 
algoritmos com o cenário atual do campus, permitindo medir os benefícios do uso desses 
algoritmos no suporte à tomada de decisões e ao planejamento urbano. 
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