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Abstract. The objective of this study is to assess the precision of various gridding methods and numerical inte-
gration approaches in accurately representing surfaces and calculating volumes between two surfaces. Three 
hypothetical surface categories were generated and volumes were computed using analytical integration in Py-
thon. These surfaces served as benchmarks for comparison with other surface forms and computed volumes. 
Various gridding methods available in Surfer software were compared, and the computed volumes were com-
pared to those obtained from Python analytical integration. Statistical metrics such as Absolute Error, Squared 
Error, and Absolute Percentage Error were used to assess the precision of each approach. The results showed 
that methods like Kriging, Inverse Distance to A Power, Triangulation with Linear Interpolation, Minimum 
Curvature, Nearest Neighbor, Radial Basis Function, and Modified Shepard's Method exhibited the highest pre-
cision across all surface types. The Natural Neighbor method was inconsistent across all surface groups, where-
as, the Local Polynomial Method had varying results. Polynomial Regression, Moving Average, and Data Met-
rics methods were excluded. The first two methods suffer from a lack of precision in representing terrain na-
tures, whereas the third method resulted both invalid volume estimates and terrain shape representation.  

Keywords: Numerical Integration; Gridding Methods; Volume Calculation, Hypothetical Surfaces, Mining Ap-
plications, Surface Topography, Surfer software. 
 
Resumo. O objetivo deste estudo é avaliar a precisão de diversos métodos de gradeamento e abordagens de inte-
gração numérica para representar superfícies com precisão e calcular volumes entre duas superfícies. Três cate-
gorias de superfícies hipotéticas foram geradas, e os volumes foram calculados utilizando integração analítica em 
Python. Essas superfícies serviram como referência para comparação com outras formas de superfície e volumes 
calculados. Vários métodos de gradeamento disponíveis no software Surfer foram comparados, e os volumes 
calculados foram analisados em relação aos obtidos por integração analítica em Python. Métricas estatísticas 
como erro absoluto, erro quadrático médio e erro percentual absoluto foram utilizadas para avaliar a precisão de 
cada abordagem. Os resultados mostraram que métodos como Kriging, inverso da distância elevada a uma po-
tência, triangulação com interpolação linear, curvatura mínima, vizinho mais próximo, função de base radial e o 
método de Shepard modificado apresentaram maior precisão em todos os tipos de superfícies. O método de vizi-
nho natural apresentou inconsistência em todas as categorias de superfícies, enquanto o método polinomial local 
teve resultados variáveis. Métodos como regressão polinomial, média móvel e métricas baseadas em dados fo-
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ram excluídos do estudo devido à baixa precisão na representação do terreno e à geração de estimativas de vo-
lume e formas de terreno inválidas. 

Palavras-chave: Integração numérica, Métodos de gradeamento, Cálculo de volume, Superfícies hipotéticas, 
Aplicações em mineração, Topografia de superfícies, Software Surfer. 
 
Resumen. El objetivo de este estudio es evaluar la precisión de varios métodos de cuadrícula y enfoques de in-
tegración numérica para representar superficies con precisión y calcular volúmenes entre dos superficies. Se 
generaron tres categorías de superficie hipotéticas y se calcularon volúmenes utilizando la integración analítica 
en Python. Estas superficies sirvieron como puntos de referencia para la comparación con otras formas de super-
ficie y volúmenes calculados. Se compararon varios métodos de cuadrícula disponibles en el software Surfer y 
los volúmenes calculados se compararon con los obtenidos a partir de la integración analítica de Python. Se uti-
lizaron métricas estadísticas como el error absoluto, el error cuadrático y el error porcentual absoluto para eva-
luar la precisión de cada enfoque. Los resultados mostraron que métodos como Kriging, la distancia inversa a 
una potencia, la triangulación con interpolación lineal, la curvatura mínima, el vecino más cercano, la función de 
base radial y el método de Shepard modificado exhibieron la mayor precisión en todos los tipos de superficie. El 
método del vecino natural fue inconsistente en todos los grupos de superficies, mientras que el método polino-
mial local tuvo resultados variables. Se excluyeron los métodos de regresión polinomial, promedio móvil y mé-
tricas de datos. Los dos primeros métodos adolecen de una falta de precisión a la hora de representar la naturale-
za del terreno, mientras que el tercer método dio como resultado estimaciones de volumen y representaciones de 
la forma del terreno no válidas. 

Palabras-clave: Integración numérica; Métodos de cuadrícula; Cálculo de volumen, Superficies hipotéticas, 
Aplicaciones mineras, Topografía de superficies, Software Surfer. 

1. INTRODUCTION 

Precise volume determination is essential in many domains such as environmental scienc-
es, resource estimation, mining, and land surveys. It influences the process of making deci-
sions, evaluating the amount of ore available, implementing mining techniques that can be 
sustained over time, carrying out excavation and filling activities, determining the feasibility 
of mining operations, and studying the environmental impact. This impact includes the ero-
sion of soil, the deposition of sediment, and the effects on the evolution of natural landscapes 
(Gerassis et al., 2021; Tubis et al., 2020; Suh et al., 2017; Jamshidi et al., 2024).  

In the realm of contemporary geospatial technology, the utilization of instruments such as 
unmanned aerial vehicles (UAVs), Light Detection and Ranging (LiDAR), and digital photo-
grammetry has brought about a significant transformation in volume calculation. This is 
achieved by offering high-resolution data and facilitating quicker and more precise measure-
ments. These technologies have greatly enhanced the efficiency and precision of volume 
computations in comparison to conventional methods (Lee & Lee, 2022; Li & Heap, 2011).  

Advancements in contour mapping, volume calculation, and assessment of natural re-
source reserves depend on scientifically proven and established procedures. Interpolation is 
the technique of estimating values in a spatial distribution without using direct measurements. 
This is done using different gridding methods. Similarly, volume calculations rely on proven 
numerical integration techniques (Karim & Howladar, 2022; Yakar & Yilmaz, 2008; Yakar et 
al., 2014; Yilmaz, 2010; Kumar & Sinha, 2018).  

Multiple gridding techniques have been extensively employed in multiple studies across 
various disciplines, showcasing their efficacy and adaptability. These techniques are neces-
sary for generating precise digital terrain models (DTMs) and conducting spatial interpola-
tions, which are vital for applications in environmental sciences, mining, civil engineering, 
and other fields. An example of the use of LiDAR technology in mining excavation is its ap-
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plication for volume calculation. This technology has been recognized for its precise and effi-
cient ability to create detailed 3D models of the terrain (Septarini, 2013; Jamshidi & Bagh-
dadi, 2018). Furthermore, the application of geospatial data for measuring the volume of ma-
terial in dredging operations showcases the dependability of gridding techniques in managing 
extensive environmental data (Ekun et al., 2016).  

In the mining industry, a comparative investigation of several interpolation methods using 
multiple software packages for volume calculation of irregular objects demonstrated the need 
of selecting proper interpolation methods to achieve accurate volume predictions (Mohamed 
& Mostafa, 2019). Furthermore, volumetric assessments of stockpiles using UAV photo-
grammetry and total station data demonstrated the importance of precise gridding techniques 
in surveying and geoinformatics (Ekpa et al., 2009). A notable study conducted a comparison 
between geological sections and structural maps to calculate reserves of cement raw materi-
als.  

This study emphasized the need of selecting an appropriate gridding technique to achieve 
precise volume estimation in intricate geological formations (Bralić & Malvić, 2022). Fur-
thermore, an extensive comparison evaluated the performance of twelve different interpola-
tion methods using Surfer software, providing a detailed assessment of the accuracy and effi-
ciency of various gridding methods, offering valuable guidance for selecting the appropriate 
method based on the specific requirements of different applications (Yang et al., 2004; Pike, 
1998). 

Despite these advances, the fundamental principles of gridding and numerical integration 
remain important. Interpolation, the process of estimating values within a spatial distribution 
without taking direct measurements, is strongly reliant on known gridding techniques. Fur-
thermore, volume calculations frequently rely on established numerical integration techniques 
such as the Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 Rule. Previous research has 
mostly focused on the applicability and performance of gridding methods across multiple 
fields, but it has not adequately investigated the differences between different numerical inte-
gration techniques employed in volume calculations.  

They also do not provide a detailed comparison of these integration strategies across vari-
ous gridding techniques. This study seeks to address this gap by carefully comparing the per-
formance of various numerical integration approaches across several gridding methods. This 
study aims to find the most acceptable methods for interpolation and the most accurate nu-
merical integration approaches for volume calculations, offering researchers and practitioners 
with vital insights on how to choose the best methods for their specific applications.  

The primary objective of this work is to assess the efficiency of various gridding methods 
in conjunction with numerical integration approaches for accurately determining the volumes 
of intricate surfaces.  

2. MATERIALS AND METHODS 

The methodology for this study is scientifically organized into some critical sections to 
confirm a detailed analysis of surface volume calculations. These sections are: Surface Crea-
tion and Analytical Volume Calculation, which describes the Hypothetical surfaces and de-
termines their volumes using analytical methods; Exporting Surface Coordinates for Surfer, 
delegating the procedure of transferring surface data to the Surfer software; Gridding Meth-
ods in Surfer, exploring the various gridding methods employed to build the surface data; 
Numerical Integration Methods in Surfer, describing the numerical techniques used to evalu-
ate volumes; Comparison of Volumes, comparing the analytical and numerical volumes; and 
Statistical Analysis, assessing the accuracy of the different methods using statistical parame-
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ters. Each section plays a vital role in confirming the reliability and accuracy of the volume 
calculations, thereby setting a solid basis for the study results. 

2.1. Surface Creation and Analytical Volume Calculation 

The main objective of this research is to assess the precision of several numerical integra-
tion techniques and gridding methods for the purpose of determining the volumes between 
diverse surface types. The research starts with the construction of three Hypothetical surfaces, 
with distinct mathematical equations defining the upper and lower surfaces of each group. 
The regularity of these surfaces is a deciding factor in their selection for analytical integra-
tion-based volume computations. The three groups of surfaces are: 

Group 1: Trigonometric Surfaces: 

Upper Surface equation  Z_top=sin(x) cos (y)+5                    (1) 
Lower Surface equation  Z_lower=cos (x) sin (y)                       (2) 

Group 2: Polynomial Surfaces: 

Upper Surface equation        (3) 

Lower Surface equation        (4) 

Group 3: Exponential Trigonometric Surfaces: 

Upper Surface equation                (5) 

Lower Surface equation                 (6) 

The surfaces were created and examined using Python on the Google Colab platform. The 
code comprised instructions for generating the surfaces, computing the analytical volumes, 
and exporting the surface data as XYZ files.  

Because of the surfaces' regularity and well-defined mathematical representations, the 
volumes trapped between them could be computed with great precision using analytical inte-
gration. The surface data were then exported to XYZ files using the same Python script for 
additional investigation. 

The classification of topographic features into various geomorphological units, such as 
plains, hills, and mountains, is crucial for comprehending the terrain's properties in mining, 
environmental, or civic applications (Sarwal et al., 2003; Iwahashi & Pike, 2007; Arif et al., 
2024). The choice of Trigonometric Surfaces, Polynomial Surfaces, and Exponential Trigo-
nometric Surfaces was designed to encompass a diverse grouping of natural topographical 
shapes encountered in many practical applications. Trigonometric surfaces depict tough ter-
rains characterized by consecutive peaks and basins, resembling mountainous areas. They 
serve as a valuable tool for examining hilly and difficult terrains. Conversely, polynomial sur-
faces depict smooth and slightly undulating terrains, such as plains and plateaus, which are 
valuable for analyzing agricultural lands and flat areas with gradual slopes. Exponential Trig-
onometric surfaces represent terrains with steep mountains and deep valleys, they exhibit a 
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resemblance to a flood plain and/or drainage valley in their physical structure, making them 
valuable for studying steep mountainous areas and rough regions. 

Therefore, using these surfaces provides a thorough depiction of various natural topogra-
phies. This enables the assessment of the precision and efficiency of numerical integration 
techniques and gridding methods in computing volumes enclosed by intricate surfaces. It aids 
in offering more accurate and thorough suggestions for researchers and professionals in-
volved in the fields of civil engineering, mining, and environmental engineering. 

2.2. Exporting Surface Coordinates for Surfer 

The surface coordinates were produced as xyz files, enabling their entry into the Surfer 
software for additional analysis. This step is essential because it allows for the comparison of 
analytical volumes with those calculated using different gridding methods provided in Surfer. 

2.3. Gridding Methods in Surfer 

The Surfer software was used to generate grids for the surfaces, with twelve alternative 
gridding approaches. These methods include the following: 

Kriging 

Kriging is a geostatistical interpolation method that was initially created by Krige & 
Kleingeld, (2005). The method is commonly employed because to its capacity to integrate the 
spatial correlation structure of the data using the variogram model, resulting in precise and 
unbiased calculations. Its application is especially valuable in industries like mining, hydrol-
ogy, and environmental research due to its proficiency in managing data that is not evenly 
distributed and offering an assessment of the margin of error in estimations (Belkhiri et al., 
2017). 

The kriging estimator Z ̂(x0) for a location x0 is defined as (Webster & Oliver, 2007): 

               (7) 

Where: λi are the kriging weights, Z(xi) are the observed data values at locations xi. The 
weights λi are obtained by solving the kriging system of equations, ensuring the unbiasedness 
of the estimator and minimizing the estimation variance. 

Inverse Distance to a Power  

Inverse Distance to a Power is a method of interpolation that involves calculating a 
weighted average. It is commonly used in the fields of geostatistics and spatial analysis. This 
approach can serve as both a precise and a smoothing interpolator, offering versatility in deal-
ing with different types of spatial data (Shukla et al., 2019). 

 In this method, the estimated value Z ̂(x0) at a given grid node x0 is calculated as a 
weighted average of nearby observations (Ozelkan et al., 2016): 

                (8) 

Where wi are the weights assigned to each observation Z(xi). The weights wi are deter-
mined based on the inverse of the distance between the grid node and the observation points, 
raised to a power p: 
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                 (9) 

Here, d(x_0,x_i ) is the distance between the grid node x0 and the observation point xi, 
and p is the power parameter that controls the rate of decay of the weights with distance. 

2.4. Triangulation with Linear Interpolation  

Triangulation with Linear Interpolation is a technique employed in GIS, computer 
graphics, and terrain modeling to generate smooth surfaces from sparse data points. The pro-
cess entails constructing a triangulated irregular network (TIN) composed of adjacent trian-
gles that do not overlap. This is achieved by use Delaunay triangulation to optimize the 
smallest angles and prevent the formation of elongated triangles. Subsequently, linear inter-
polation is employed to approximate values at each given position within each triangle 
(Gonet & Gonet, 2017). 

Minimum Curvature  

The Minimum Curvature Gridding Method, commonly referred to as "bicubic spline" in-
terpolation, is a method employed to generate smooth surfaces from data points that are not 
evenly distributed. The objective is to reduce the overall curvature, leading to a visually ap-
pealing and seamless depiction of the data. This approach effectively solves the biharmonic 
problem by guaranteeing the continuity of both first and second derivatives. The process en-
tails making an initial estimation of the grid, making iterative modifications, and continuing 
this process until the change in the surface reaches a predetermined tolerance level 
(Bronowicka-Mielniczuk et al., 2019).  

Natural Neighbor  

Natural Neighbor Interpolation is a technique that enhances the interpolation of data 
points that are not evenly distributed, while maintaining local features and preventing distor-
tions. The process entails creating a Voronoi diagram, determining the natural neighbors for a 
certain interpolation point, and computing weights based on the overlapping area between the 
new and old Voronoi cells. The weight assigned to each neighbor is proportional to the area 
of the new cell (Yanalak, 2003). 

Nearest Neighbor  

The Nearest Neighbor Interpolation method determines the closest data point based on 
Euclidean distance and assigns the value of that data point to the interpolation point (Long 
Nguyen et al., 2020). 

Local Polynomial 

Local Polynomial Interpolation is a mathematical method that entails constructing a poly-
nomial surface to approximate data points within a particular vicinity. This approach effec-
tively captures localized fluctuations and generates interpolated surfaces that are smooth 
(Schaum, 2008). 

Radial Basis Function 

The Radial Basis Function (RBF) utilizes interpolation through the use of radial basis 
functions, which are a specific sort of function that solely rely on the distance from a central 
point (Celant & Broniatowski, 2016). 
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Polynomial Regression 

Polynomial regression Interpolation is a technique employed to construct a polynomial 
equation that accurately represents a given set of data points, enabling the prediction of val-
ues at regions where no samples were taken. This technique is advantageous for catching the 
fundamental patterns in the data ( Conn & Scheinberg, 2008). 

2.5. Modified Shepard's Method 

The Modified Shepard's Method employs an inverse distance weighted least squares 
technique. The Modified Shepard's Method is comparable to the Inverse Distance to a Power 
interpolator, but the incorporation of local least squares helps to eliminate or minimize the 
"bull's-eye" pattern observed in the resulting contours. The Modified Shepard's Method can 
function as either a precise or a smoothing interpolator (Malvić, 2020). 

Data metrics Method 

Data metrics gridding method generates grids of information at each individual node, pre-
senting data points used, standard deviation, variance, coefficient of variation, and median 
absolute deviation. These metrics are essential for statistical analysis and can be utilized to 
ascertain new sampling locations and generate a contour map indicating the proximity to the 
nearest data point. 

Moving Average Method 

The Moving Average gridding method calculates the values of grid nodes by taking the 
average of the data points within the search ellipse. While it is possible to include breakline 
data, it is not advisable for small or moderate-sized data sets.  

2.6. Numerical Integration Methods in Surfer 

The Surfer software employs three numerical integration methods to calculate volumes: 

Trapezoidal Rule 

The Trapezoidal Rule is a computational technique employed to estimate the definite in-
tegral of a function. Due to its uncomplicated implementation and relatively accurate results 
for various sorts of functions, it is considered one of the easiest and most frequently em-
ployed methods. The fundamental concept behind the Trapezoidal Rule involves partitioning 
the region beneath the curve into a sequence of trapezoids, determining the area of each trap-
ezoid, and subsequently aggregating these areas to estimate the overall integral (Lee, 2019). 
The equation for the Trapezoidal Rule is given by: 

         (10) 

where: [a, b] is the interval over which the integration is performed. n is the number of 
subintervals. xi are the points dividing the interval [a, b] into n subintervals. The interval is 
divided into n equal parts, and the function values at these points are used to calculate the ar-
ea of the trapezoids. 

Simpson's Rule 

Simpson's Rule is a more accurate method of numerical integration than the Trapezoidal 
Rule. Instead of trapezoids, it divides the area under the curve into parabolic pieces to ap-
proximate a function's integral. This approach provides a better level of precision, particularly 
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for functions that are well approximated by parabolas across each subinterval (Lee, 2019). 
The equation for Simpson's Rule is given by: 

    (11) 

where: [a, b] is the interval over which the integration is performed. n is the number of 
subintervals, which must be an even number. xi are the points dividing the interval [a, b] into 
n subintervals. 

Simpson's 3/8 Rule 

The Simpson's 3/8 Rule is a method that expands upon Simpson's Rule for the purpose of 
numerical integration. It is employed to estimate the exact integral of a function by partition-
ing the region beneath the curve into cubic polynomials. This approach offers a superior level 
of precision in comparison to the usual Simpson's Rule, particularly for functions that may be 
well-approximated by cubic polynomials inside each subinterval (Lee, 2019). The equation 
for Simpson's 3/8 Rule is given by: 

  (12) 

where: [a, b] is the interval over which the integration is performed. n is the number of 
subintervals, which must be a multiple of 3. xi are the points dividing the interval [a, b] into n 
subintervals. 

The volumes between the upper and lower surfaces of each of the three surface groups 
were computed analytically using Python. These volumes were used as the benchmark for 
comparing the volumes calculated by Surfer using various gridding methods and numerical 
integration techniques. The volumes obtained by the three numerical integration techniques in 
Surfer (Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 Rule) were compared to the 
volumes produced analytically, which served as the benchmark for accuracy.  

2.7. Statistical Analysis 

Statistical analysis plays a vital role in assessing the effectiveness of various computa-
tional methods and guaranteeing the precision and reliability of the results. This study utilized 
statistical metrics, including Absolute Error (AE), Squared Error (SE), and Absolute Percent-
age Error (APE), to compare the volumes obtained by Surfer's numerical integration methods 
with the volumes estimated analytically. These metrics offer valuable information about the 
volume and reliability of the errors linked to each gridding and integration approach, enabling 
a thorough evaluation of their performance. The study assists in identifying the most precise 
methods and those that may cause substantial errors, hence directing the selection of suitable 
strategies for surface volume computations in different applications. 

Absolute Error (AE) 

The Absolute Percentage Error calculates the error by normalizing it with respect to the 
analytical volume and expressing it as a percentage (Spray, 1986). It is characterized or de-
scribed as: 
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             (13) 

Squared Error (SE) 

The Squared Error is a metric that quantifies the variance of the errors by squaring the er-
ror, thereby emphasizing the larger differences. It is defined as: 

             (14) 

Absolute Percentage Error (APE) 

The error is normalized relative to the analytical volume by the Absolute Percentage Er-
ror, which is expressed as a percentage (Hyndman & Koehler, 2006). It is defined as: 

             (15) 

These statistical measurements offer a thorough assessment of the effectiveness of the numerical 
integration methods, emphasizing the precision and possible inconsistencies in the volume computa-
tions. 

3. RESULTS 

This section provides the results obtained by analyzing the distinct surface groups and 
comparing the volumes derived using different gridding and numerical integration methods. 
The subject matter is partitioned into three distinct sections: 

• Results and Interpretation of Trigonometric Surfaces 
• Results and Interpretation of Polynomial Surfaces 
• Results and Interpretation of Exponential Trigonometric Surfaces 
 
Each part includes detailed results, statistical analysis, and interpretations to evaluate the 

accuracy and reliability of the methods used. 

3.1. Results and Interpretation of Trigonometric Surfaces 

The first set of surfaces was generated using trigonometric functions defined by equations 
(1) and (2) through Python programming. The computed volume enclosed by these surfaces 
is 500 units. Figure 1 depicts the surfaces, highlighting the shape and spatial correlation be-
tween the upper and bottom surfaces. 
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Figure 1. Trigonometric surfaces were created using Python,  

based on equations (1) and (2), and have a volume of 500 cubic units. 
 
In order to assess the precision of numerical integration techniques, the volumes enclosed 

by these surfaces were also computed using Surfer software. The surfer uses twelve distinct 
gridding techniques to generate organized grids based on the surface data. The volumes were 
computed for each gridding approach using three numerical integration techniques: The 
Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 Rule. Thus, for every gridding tech-
nique, there are three estimations of volume. 

Table 1 displays the outcomes of the numerical volume calculations for each of the 
twelve gridding approaches, utilizing the three numerical integration techniques. The table 
also contains the statistical parameters—Absolute Error (AE), Squared Error (SE), and Abso-
lute Percentage Error (APE)—that were utilized to evaluate the accuracy of the numerical 
volumes by comparing them with the analytically calculated volume. 

 
Table 1. Numerical volumes and statistical parameters for trigonometric surfaces using twelve gridding 
methods and three numerical integration techniques, compared to the analytical volume of 500 cubic 
units. 

Gridding Method 
Numerical 
Integration 

Method 

Numerical Vol-
ume 

Absolute Error 
(AE): Squared Error (SE) 

Absolute Per-
centage Error 

(APE) 

Kriging 
1* 499.99999990978 0.00000009022 0.00000000000001 0.000000018044 
2** 499.99999990279 0.00000009720998 0.00000000000001 0.000000019442 
3*** 499.99999990927 0.00000009073 0.00000000000001 0.000000018146 

Inverse Distance to A 
Power 

1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Triangulation with 
Linear Interpolation 

1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Minimum Curvature 
1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Natural Neighbor 1 489.95000510152 10.04999489848 101.002397459474 2.009998979696 
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2 491.61791880647 8.38208119352998 70.259285134929 1.676416238706 
3 492.45293847567 7.54706152432999 56.9581376520221 1.509412304866 

Nearest Neighbor 
1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Local Polynomial 
1 499.99779763905 0.00220236094998 0.00000485039375 0.00044047219 
2 499.99511366893 0.00488633107 0.00002387623133 0.000977266214 
3 499.99923702114 0.00076297886 0.00000058213674 0.000152595772 

Radial Basis Function 
1 500.00000004354 0.00000004354001 0.0 0.000000008708 
2 500.00000003916 0.00000003916 0.0 0.000000007832 
3 500.00000004052 0.00000004051998 0.0 0.000000008104 

Polynomial Regres-
sion 

1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Modified Shepard's 
Method 

1 500 0.0 0.0 0.0 
2 500 0.0 0.0 0.0 
3 500 0.0 0.0 0.0 

Data Metrics 
1 0 500.0 250000.0 100.0 
2 0 500.0 250000.0 100.0 
3 0 500.0 250000.0 100.0 

Moving Average 
1 500.00000004354 0.00000004354001 0.0 0.000000008708 
2 500.00000003916 0.00000003916 0.0 0.000000007832 
3 500.00000004052 0.00000004051998 0.0 0.000000008104 

*Trapezoidal Rule  **Simpson's Rule  ***Simpson's 3/8 Rule 
 
When comparing the volumes computed using the twelve gridding methods to the analyt-

ically determined volume of 500 cubic units, several observations can be made about the pre-
cision and accuracy of these methods. The volume calculations were performed using three 
numerical integration techniques: Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 Rule. 

There are minimum Absolute Percentage Errors (APE), Squared Errors (SE), and Abso-
lute Errors (AE), and the volumes computed by the three Kriging numerical integration 
methods are very near to the analytical volume. This proves that Kriging works wonderfully 
and accurately with this dataset. Likewise, when it comes to volume calculations, Inverse 
Distance to A Power is quite reliable, since it agrees exactly with the analytical volume using 
all three numerical integration methods (AE, SE, and APE all equal to zero). In addition to 
perfectly aligning with the analytical volume, triangulation with linear interpolation shows no 
mistakes when using any integration method. When it comes to numerical integration meth-
ods, Minimum Curvature works wonders, producing error-free volumes. 

Natural Neighbor, on the other hand, reveals substantial differences. It appears that Natu-
ral Neighbor is not as trustworthy on this dataset because the computed volumes differ signif-
icantly from the analytical volumes, leading to higher AE, SE, and APE values. However, 
just like the top-performing approaches, Nearest Neighbor demonstrates flawless accuracy 
with zero mistakes. 

While AE and SE show the most noticeable discrepancies, Local Polynomial is often ac-
curate. Across numerical approaches, the overall performance is solid, and these are small. 
Radial Basis Function equals or exceeds Kriging and Inverse Distance to A Power in terms of 
precision, showing essentially no AE, SE, or APE. 
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With no outliers in the analytical volume, Polynomial Regression proves to be absolutely 
accurate and dependable. In a similar vein, the analytical volume and Modified Shepard's 
Method match exactly, demonstrating excellent accuracy. Data Metrics, on the other hand, 
demonstrates terrible performance, with significant mistakes observed across all integration 
methods. It is clear that Data Metrics is not a good fit for this dataset because the computed 
volumes are drastically off. When it comes to volume calculations, Moving Average shows 
great accuracy with minimum errors. 

In general, techniques such as Kriging, Inverse Distance to A Power, Triangulation with 
Linear Interpolation, Minimum Curvature, Nearest Neighbor, Radial Basis Function, Poly-
nomial Regression, and Modified Shepard's Method demonstrate significant precision and 
dependability. However, there are significant differences between Natural Neighbor and Data 
Metrics, indicating that they may not be suitable for analyzing this dataset. The Moving Av-
erage, although not flawless, yet demonstrates sufficient performance to be deemed credible. 

To further verify the precision and visual depiction of the trigonometric surfaces generat-
ed, the Surfer software was also utilized to render the surfaces. This entailed generating grid 
files for each of the twelve distinct gridding techniques. The grid files were utilized in Surfer 
to construct visual representations of the surfaces, enabling a direct comparison with the sur-
faces generated by Python. The aim was to evaluate the accuracy of various gridding tech-
niques in Surfer in reproducing the precise forms of surfaces as determined by mathematical 
equation. 

The following are the 3D surface plots for the twelve distinct gridding methods created 
by Surfer for trigonometric surfaces data. Figure 2 depicts the 3D plots for each gridding 
method. 

 

  

(a) Kriging (b) Inverse Distance to A Power 

http://dx.doi.org/10.14571/brajets.v17.nse3.231-254


 

Br. J. Ed., Tech. Soc., v.17, n.se3, p.231-254, 2024 
DOI http://dx.doi.org/10.14571/brajets.v17.nse3.231-254  
ISSN 2316-9907 

243 

   

(c) Triangulation with Linear Interpolation (d) Minimum Curvature 

  

(e) Natural Neighbor (f) Nearest Neighbor 

  

(g) Local Polynomial (h) Radial Basis Function 
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(i) Polynomial Regression (j) Modified Shepard's Method 

 
 

(k) Data Metrics (l) Moving Average 
Figure 2. 3D surface plots of the trigonometric surfaces generated using twelve different grid-ding 

methods in Surfer. 

3.2. Results and Interpretation of Polynomial Surfaces 

The upper and lower Hypothetical surfaces in this group were also generated using Py-
thon, as defined by equations (3) and (4), respectively. The analytical volumes between these 
surfaces were precisely determined using analytical integration, resulting in a value of 
7160.98753613601 cubic units. Figure 3 depicts the shape of these surfaces as created with 
Python. 
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Figure 3. Generated polynomial surfaces using Python, defined by equations (3) and (4), with an 
analytical volume of 7160.98753613601 cubic units. 

 
To guarantee the precision and reliability of the volume computations, the surfaces were 

plotted using the Surfer software with twelve alternative gridding methods. The goal was to 
compare the numerical volumes generated using Surfer's gridding and numerical integration 
techniques to the analytically calculated volume. 

After examining the volumes computed for the Polynomial Surfaces group using different 
gridding methods and numerical integration techniques, some trends and observations can be 
identified. 

Some of the methods that can generate precise volume measurements are Kriging, Inverse 
Distance to A Power, Triangulation with Linear Interpolation, Minimum Curvature, Nearest 
Neighbor, Radial Basis Function, Polynomial Regression, and Modified Shepard's Method. 
These methods provide exceptional concurrence with the analytical volume of 
7160.98753613601 cubic units. The Absolute Errors (AE), Squared Errors (SE), and Abso-
lute Percentage Errors (APE) for these approaches are small or nil, indicating a high level of 
accuracy and precision across all three numerical integration techniques: Trapezoidal Rule, 
Simpson's Rule, and Simpson's 3/8 Rule. 

Nevertheless, the Natural Neighbor approach displays substantial deviations from the 
analytical volume. The computed volumes yield elevated AE, SE, and APE values, suggest-
ing diminished trustworthiness for this dataset. 

Remarkably, Polynomial Regression and Moving Average approaches yielded identical 
volume measurements despite apparent differences in their visual representations. Although 
the surface plots produced using these approaches did not visually correspond to the surfaces 
generated by Python, the volume computations utilizing numerical integration techniques 
were precise, resulting in a computed volume of 7160.98753613601 cubic units. 

In contrast, the Data Metrics method exhibits inadequate performance, displaying signifi-
cant inaccuracies across all integration techniques. The computed volumes deviate greatly, 
indicating that Data Metrics is not appropriate for this dataset. 

To summarize, the majority of gridding approaches, with the exception of Natural Neigh-
bor and Data Metrics, yield precise and dependable volume estimations when combined with 
robust numerical integration techniques. This study emphasizes the significance of choosing 
suitable gridding techniques to guarantee accurate volume calculations, particularly in appli-
cations that demand high precision, such as environmental assessments and resource estima-
tion. 

3.3. Results and Interpretation of Exponential Trigonometric Surfaces 

Equations (5) and (6), which determine the upper and lower Hypothetical surfaces in the 
third group, were developed in Python. Using analytical integration, the analytical volumes 
between these surfaces were exactly determined, and the result was 1035.03930118278 cubic 
units. The shape of these surfaces as produced by Python is shown in Figure 4. 
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Figure 4. Generated exponential trigonometric surfaces using Python, defined by equations (5) and (6), 

with an analytical volume of 1035.03930118278 cubic units. 
 
The surfaces were additionally plotted using the Surfer program, employing a total of 

twelve gridding techniques, in order to guarantee the precision and dependability of the vol-
ume computations. The objective was to compare the numerical volumes that were achieved 
with the analytically estimated volume using Surfer's gridding and numerical integration 
techniques. 

When comparing the volumes computed using the twelve gridding methods with the ana-
lytically determined volume of 1035.03930118278 cubic units, several observations can be 
made about the precision and accuracy of these methods. The three numerical integration 
techniques used for this analysis are the Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 
Rule. 

The following methods consistently produced accurate results across all numerical inte-
gration techniques: Kriging, Inverse Distance to A Power, Triangulation with Linear Interpo-
lation, Minimum Curvature, Nearest Neighbor, Radial Basis Function, and Modified Shep-
ard's Method. The analytical volume was closely followed by these approaches, which dis-
played minimal Absolute Percentage Errors (APE), Squared Errors (SE), and Absolute Errors 
(AE). 

For example, Kriging proved to be very accurate, whereas the volumes computed using 
the Trapezoidal Rule, Simpson's Rule, and Simpson's 3/8 Rule all showed very little inaccu-
racies. Volumes calculated using Inverse Distance to A Power were also spot on with the ana-
lytical value, proving the method's reliability. 

However, there were notable differences between the results obtained using the Data Met-
rics and Natural Neighbor approaches. The increased AE, SE, and APE values are a reflection 
of the large analytical volume variations caused by Natural Neighbor. It appears that Natural 
Neighbor is not as trustworthy on this particular dataset. Data Metrics was clearly not made 
for this kind of data because it had terrible performance across all integration methods, dis-
playing large failures. 

Furthermore, the surface plots created by the Polynomial Regression and Moving Aver-
age methods failed to visually mimic the surfaces provided by the original Python code. 
There is a difference between visual and volumetric accuracy, since these methods produced 
precise volume estimates with little numerical errors, even if they didn't look similar. 

All three types of surfaces—trigonometric, polynomial, and exponential trigonometric—
had the same results. The reliability of some gridding methods is demonstrated by their con-
stant performance across various surface types, while the importance of selecting appropriate 
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gridding approaches based on specific topographical characteristics is highlighted by the ob-
served disparities in other methods. 

When the twelve surface plots created by Surfer were compared to the original Python 
surfaces in the three categories of trigonometric, polynomial, and exponential trigonometric 
surfaces, nine of the twelve plots were found to be an exact match. Gridding methods such as 
Kriging, Inverse Distance to A Power, Triangulation with Linear Interpolation, Minimum 
Curvature, Natural Neighbor, Nearest Neighbor, Local Polynomial, Radial Basis Function, 
and Modified Shepard's Method are shown to be accurate by these consistent results. 

But surfaces made using Data Metrics, Moving Average, and Polynomial Regression all 
have noticeable differences. The surface plots generated by these three approaches were dras-
tically different from the ones provided by Python. It is worth mentioning that, even though 
they don't look similar, the Moving Average and Polynomial Regression approaches pro-
duced accurate volumes when numerically integrated. The need of thorough validation 
through numerical comparison and visual inspection is underscored by the fact that these 
gridding methods significantly differ in their visual and volumetric correctness. 

In all three sets of surfaces, the same pattern of visual and volumetric matching was accu-
rate with the same 9 approaches, whereas the same 3 methods constantly showed disparities. 
Based on the findings that have been replicated, it appears that the three methods that yielded 
inconsistent results may be more affected by specific surface data properties that are un-
derrepresented in the surfaces generated by Python. Considerations such as the unique math-
ematical characteristics of the gridding techniques employed and differences in data density 
at the local level could fall into this category. 

4. DISCUSSION 

The attained results warrant a division of the discussion into two main sections to ensure 
a thorough comprehension and interpretation. The first section of our analysis investigates 
whether the volumes of material, determined by three numerical integration methods in Surf-
er program, align precisely with the volumes estimated analytically using distinct equations 
in Python. In the second section, another inquiry has been raised: "To what extent do the sur-
faces in the three groups, which are produced using grid files generated by different gridding 
methods in Surfer software, resemble the surfaces generated from various equations in Py-
thon?" 

The responses to these inquiries will offer valuable perspectives on the precision and reli-
ability of the numerical integration methods and gridding methods employed in this investi-
gation. 

4.1. First Group: Trigonometric Surfaces 

Upon closer examination of the data for the trigonometric surface, it is evident that five 
techniques (Inverse Distance to A Power, Triangulation with Linear Interpolation, Minimum 
Curvature, Nearest Neighbor, and Modified Shepard's Method) demonstrated complete con-
sistency in the volumes predicted using the three numerical integration methods compared to 
those acquired using analytical integration. These methods also attained a perfect correspond-
ence between the surface shape created by Surfer software and the one plotted using Python. 
Thus, it can be concluded that if natural topographies resemble these hypothetical rugged ter-
rains with mountain peaks or hills and low valleys, these five techniques are highly recom-
mended for obtaining the most precise depiction of such surfaces and for calculating volumes 
between these surfaces.  

The exceptional precision observed with Inverse Distance to A Power, Triangulation with 
Linear Interpolation, Minimum Curvature, Nearest Neighbor, and Modified Shepard's Meth-
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od can be ascribed to several variables. These methods are recognized for their mathematical 
robustness, which ensures dependable and consistent outcomes across a range of applications 
(Belkhiri et al., 2017). Their main emphasis is on local interpolation, which guarantees that 
the computed values closely correspond to the actual data points, hence maintaining the in-
herent patterns and characteristics of the terrain (Shukla et al., 2019). Moreover, these tech-
niques exhibit efficient smoothing capabilities, which are crucial for dealing with the noise 
and abnormalities frequently encountered in real-world data (Yanalak, 2003). 

In addition, these techniques are flexible and capable of being adjusted to various data 
sets and geographical characteristics, rendering them appropriate for a diverse array of uses 
(Yang et al., 2004). The interpolation and volume calculation methods are based on solid 
mathematical concepts, which guarantees their reliability and accuracy. This is supported by 
well-established theoretical underpinnings (Schaum, 2008). By incorporating these tech-
niques into calculations of surface area and volume, researchers and professionals can get a 
significant level of accuracy, which is essential for accurately depicting natural terrains and 
for making well-informed judgments based on these calculations. 

Furthermore, there are three other methods that have remarkably reduced error margins in 
volume calculations when compared to analytically computed volumes and those obtained 
using numerical integration, as discussed before. Furthermore, the surfaces produced by all 
three techniques in Surfer program are completely congruent with those plotted using Python. 
The three methods used are Kriging, Radial Basis Function, and Local Polynomial. 

Kriging, a geostatistical technique, is notable for its sophisticated interpolation skills that 
consider spatial autocorrelation, resulting in a precise representation of surface topography 
and accurate volume calculations. The approach employs variogram models to generate op-
timal linear unbiased predictions of intermediate values, successfully capturing the spatial 
structure and variability of the data. 

Radial Basis Function (RBF) interpolation is well-known for its ability to smoothly and 
flexibly fit complicated surfaces. Radial basis function (RBF) approaches employ radial basis 
functions to interpolate the values of a function across a specified number of points, resulting 
in a seamless and precise representation of the surface. The method is highly efficient in han-
dling dispersed data points and yields little error in volume computations due to its intrinsic 
smoothness and adaptability (Bronowicka-Mielniczuk, et al., 2019). 

Local polynomial interpolation, which utilizes polynomial equations suited to specific re-
gions, has exceptional precision. This approach demonstrates enhanced capability in accom-
modating fluctuations in data by employing a polynomial equation that is fitted within a spe-
cific vicinity of each data point. Consequently, it captures localized patterns and guarantees a 
very accurate representation of the actual topography in the interpolated surface. By employ-
ing local fitting, the influence of outliers is minimized, leading to accurate volume computa-
tions (Celant & Broniatowski, 2016). 

Collectively, these techniques showcase their expertise in precisely depicting and compu-
ting volumes for surfaces that imitate natural landscapes with different levels of intricacy. 
The use of spatial autocorrelation analysis in Kriging, the inherent smoothness of Radial Ba-
sis Function interpolation, and the local flexibility of Local Polynomial interpolation collec-
tively contribute to their exceptional accuracy and minimal margin of error. 

Following the highly accurate methods, it has been found that the Natural Neighbor inter-
polation approach has a significantly greater margin of error in volume computations com-
pared to all other gridding methods. 

The Trapezoidal Rule yields a numerical volume of 489.95000510152, which corre-
sponds to a substantial Absolute Error (AE) of 10.04999489848, a Squared Error (SE) of 
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101.002397459474, and an Absolute Percentage Error (APE) of 2.009998979696%, which 
indicates a substantial divergence from the analytical volume. 

For Simpson's Rule, the computed volume is 491.61791880647, which, although signifi-
cantly improved, still exhibits significant errors with an absolute error (AE) of 
8.38208119353 and an absolute percent error (APE) of 1.67641623871%. 

The Simpson's 3/8 Rule yields a numerical volume of 492.45293847567, indicating a 
modest improvement but still considerable inaccuracies with an absolute error (AE) of 
7.54706152433 and an absolute percentage error (APE) of 1.50941230487%. 

The significant inaccuracies reported in the Natural Neighbor approach can be due to var-
ious fundamental features of this interpolation technique. The process of Natural Neighbor 
interpolation involves creating natural neighbor regions around individual points and utilizing 
these regions to interpolate data. This approach is particularly responsive to the geographic 
arrangement and concentration of the input data points. Irregularly spaced data points or loca-
tions with sparse data can result in substantial errors when using interpolation (Conn et al., 
2008). Despite the Natural Neighbor interpolation approach showing considerable inaccura-
cies in volume estimates, the forms of the resulting surfaces were completely consistent with 
those produced using Python. The comparatively elevated inaccuracies in Natural Neighbor 
interpolation emphasize the significance of choosing a suitable gridding technique that aligns 
with the characteristics and dispersion of the data. 

Finally, it's critical to talk about the three techniques that were left out. The first method, 
Polynomial Regression, produced horizontal surfaces that were 100% different from the actu-
al shape of the original surfaces generated by Python, despite achieving a perfect match with 
the volumes calculated through analytical integration with a 0% error rate. The nature of pol-
ynomial regression, which tends to smooth out the data and may cause complex surface prop-
erties to be oversimplified, is responsible for this notable discrepancy. The approach fails to 
capture the detailed topographical changes due to this smoothing effect, resulting in the gen-
eration of unrealistic horizontal surfaces rather than the rugged terrain features found in the 
original data. 

Moving Average is the second of the three approaches that are not included. Although 
there were only a few minor inaccuracies in the volume calculations, the surfaces produced 
by the Moving Average approach differed dramatically from the initial surfaces developed 
using Python. These modified or smoothed surfaces can be referred to as adjusted surfaces. 
The mismatch occurs because the Moving Average approach naturally mitigates the data, di-
minishing the intricacy and intricateness of the topographical characteristics. Consequently, 
the surfaces produced fail to accurately depict the intricate topographical fluctuations, result-
ing in a loss of precision in reflecting the real terrain (Lee, 2019). 

The Data Metrics approach is the third method that is excluded. Remarkably, the Data 
Metrics approach produces parallel surfaces that perfectly align with each other, leading to an 
estimated volume of zero between the surfaces. This suggests that the approach is unable to 
accurately record any differences in the terrain that occur in three dimensions. As a result, it 
cannot be trusted for accurately capturing 3D topographical surfaces or computing volumes 
between these surfaces. The method's inability to provide precise representations is attributed 
to its inherent constraints in dealing with intricate terrain characteristics and spatial varia-
tions, resulting in oversimplification and loss of critical details (Lee, 2019). 

The alignment of surfaces made using Surfer software and those generated from equa-
tions using Python showed a high degree of consistency across all three surface groupings: 
Trigonometric surfaces, Polynomial surfaces, and Exponential Trigonometric surfaces. 
Therefore, the discussion regarding the alignment of surfaces generated using Surfer software 
with those generated from equations using Python will not be repeated when addressing the 
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remaining two groups: Polynomial Surfaces and Exponential Trigonometric Surfaces. The 
discussion will focus on the outcomes relating to the consistency of volume computations 
among surfaces for each gridding technique, except the three approaches that were previously 
excluded in the first group, as they were also discarded in the subsequent two groups. 

4.2. Second Group: Polynomial Surfaces 

For the Polynomial Surfaces group, none of the three numerical integration approach us-
ing different gridding methods achieved a perfect match with the analytically computed vol-
ume. This can be attributed to many aspects associated with the characteristics of polynomial 
surfaces. Firstly, polynomial surfaces can exhibit small, intricate variations in slope and cur-
vature. Some numerical integration methods may not accurately capture these small changes. 
In addition, several numerical integration methods exhibit sensitivity to minor alterations in 
the data, resulting in modest inconsistencies in the computed volume.  

For polynomial surfaces, techniques such as Kriging, Inverse Distance to A Power, Tri-
angulation with Linear Interpolation, Minimum Curvature, Nearest Neighbor, and Modified 
Shepard's Method demonstrated remarkable precision by effectively capturing the spatial var-
iability in the data. These methods are highly proficient in effectively managing surfaces that 
exhibit gradual changes, a common trait of polynomial surfaces.  

The Radial Basis Function approach exhibited exceptional performance, showcasing its 
resilience in accurately interpolating spatial data.  

However, techniques such as Local Polynomial, Natural Neighbor, and Polynomial Re-
gression exhibited greater inaccuracies. The Local Polynomial approach may add bias as it 
has a propensity to reduce variances, whilst the Natural Neighbor and Polynomial Regression 
methods may not adequately capture the intricate complexity of the polynomial surface, re-
sulting in larger mistakes.  

Overall, while dealing with polynomial surfaces, it is advisable to utilize techniques such 
as Kriging, Inverse Distance to A Power, and Triangulation with Linear Interpolation due to 
their high level of precision. Conversely, methods such as Moving Average and Data Metrics 
should be disregarded as they are not as accurate. 

4.3. Third Group: Exponential Trigonometric Surfaces 

The Exponential Trigonometric Surfaces, which have an analytical volume of 
1035.03930118278 cubic units, yielded interesting results when compared to the Polynomial 
Surfaces and Trigonometric Surfaces in terms of the various gridding methods used. 

The methods employed, including Kriging, Inverse Distance to A Power, Triangulation 
with Linear Interpolation, Minimum Curvature, Nearest Neighbor, and Modified Shepard's 
Method, demonstrated remarkable precision, especially when combined with Simpson's 3/8 
Rule. The absolute errors were exceedingly minimal, nearly achieving a perfect match with 
the analytical volume. These approaches exhibited the lowest Absolute Error (AE), Squared 
Error (SE), and Absolute Percentage Error (APE), indicating their ability to effectively han-
dle the spatial fluctuations inherent in exponential trigonometric surfaces. The consistent per-
formance of these surfaces in varied contexts highlights their trustworthiness in diverse geo-
spatial applications. 

The Radial Basis Function approach demonstrated exceptional accuracy with minimal er-
rors. This demonstrates its consistent and reliable performance in the Polynomial Surfaces 
category, hence affirming its strength and trustworthiness. 

Conversely, the Local Polynomial and Polynomial Regression techniques exhibited 
greater errors. While their values are relatively low, they suggest a slight divergence from the 
analytical volume. These results indicate that Polynomial Regression may have problems in 
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accurately representing exponential trigonometric surfaces. The results align with those seen 
in the Polynomial Surfaces group, where Polynomial Regression similarly exhibited notewor-
thy inaccuracies. 

The Natural Neighbor technique displayed substantial inaccuracies. The Natural Neigh-
bor approach exhibited a significant absolute error (AE) of 19.99433837328000 when used to 
the Trapezoidal Rule, and similarly substantial mistakes were observed with other numerical 
integration methods. These results suggest that the method struggles to accurately handle the 
intricate nature of exponential trigonometric surfaces. Similarly, the Polynomial Surfaces 
group found that Natural Neighbor exhibited substantial inaccuracies, thereby validating its 
limitations in adequately representing intricate surface geometries.  

Ultimately, while dealing with exponential trigonometric surfaces, it is advisable to uti-
lize techniques such as Kriging, Inverse Distance to A Power, and Triangulation with Linear 
Interpolation due to their remarkable precision, which is comparable to their effectiveness in 
Polynomial Surfaces. 

Table 2 provides a thorough categorization of several gridding methods, taking into ac-
count their precision and appropriateness for generating surfaces and calculating volumes be-
tween those surfaces. The performance of each method was assessed by comparing the nu-
merical integration results obtained from the Surfer software, with 12 distinct gridding meth-
ods, with the volumes estimated analytically using Python scripts. In addition, the surfaces 
produced using Python were compared to those plotted using various gridding methods in 
Surfer.  

The categorization of the consistency between volumes computed through numerical in-
tegration using various gridding methods in Surfer and volumes computed using analytical 
integration in Python is organized into five ranks, each denoted by a capital letter. If the vol-
ume value is Perfect consistent, it is designated as the letter A. If it is remarkably consistent, 
it is assigned the letter B. If it demonstrates consistency with only a slight inaccuracy, it is 
assigned the grade of C. If it is inconsistent with a significant error compared to other meth-
ods, it is designated with the letter D. If it is completely inconsistent, it is designated with the 
letter E. 
 
Table 2. Categorization of Gridding Methods According to Accuracy and Applicability for Surface 
Representation and Volume Calculation. 

Gridding 
Method 

Group I: Trigonometric Sur-
faces 

Group II: Polynomial Surfaces 
Group III: Exponential Trigo-

nometric Surfaces 
Accuracy 

Volume Cal-
culation 

Surface Repre-
sentation 

Volume Cal-
culation 

Surface Repre-
sentation 

Volume Cal-
culation 

Surface Repre-
sentation 

1* B matched B matched B matched 
2 A matched B matched B matched 
3 A matched B matched B matched 
4 A matched B matched B matched 
5 D matched D matched D matched 
6 A matched B matched B matched 
7 B matched D matched C matched 
8 B matched B matched B matched 
9 A Not matched D Not matched D Not matched 
10 A matched B matched B matched 
11 E Not matched E Not matched E Not matched 
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12 B Not matched D Not matched D Not matched 
* 1= Kriging, 2= Inverse Distance to A Power, 3= Triangulation with Linear Interpolation, 4 
=Minimum Curvature, 5= Natural Neighbor, 6= Nearest Neighbor, 7= Local Polynomial, 8= Radial 
Basis Function, 9= Polynomial Regression, 10= Modified Shepard's Method, 11=Data Metrics, and 
12= Moving Average 

 
Table 2 briefly presented the findings of the investigation in a manner that facilitates rap-

id understanding. The comprehensive overview will be provided in the subsequent section, 
"Conclusion."  

5. CONCLUSION 

This study assessed the precision and reliability of different gridding methods in creating 
surfaces and determining volumes in three separate types of terrains: Trigonometric Surfaces, 
Polynomial Surfaces, and Exponential Trigonometric Surfaces. The selection of these surfac-
es was based on their ability to accurately depict various topographical characteristics com-
monly observed in natural environments. 

The Trigonometric Surfaces were selected to mimic rough, mountainous terrains charac-
terized by conspicuous peaks and deep valleys. The Polynomial Surfaces were chosen to rep-
licate gradually sloping mountainous areas devoid of prominent peaks or valleys. Finally, the 
Exponential Trigonometric Surfaces were created to depict high mountains interspersed with 
low-lying valleys. Every type of surface presented distinct difficulties for generating the sur-
face and calculating its volume, resulting in a thorough evaluation of the effectiveness of the 
gridding approaches. 

The results showed that there are seven methods that demonstrated either perfect or re-
markable consistency throughout the three surface groups, in terms of both volume computa-
tions and the representation of the created surfaces. These methods are: Kriging, Inverse Dis-
tance to A Power, Triangulation with Linear Interpolation, Minimum Curvature, Nearest 
Neighbor, Radial Basis Function, and Modified Shepard's Method. These approaches demon-
strated minimum absolute errors and great precision for all categories of surfaces, giving 
them reliable options for geospatial applications that involve intricate terrains. 

Natural Neighbor method was found to be inconsistent across all three surface groups and 
was assigned the letter D, despite the fact that the surfaces generated using different gridding 
methods matched those generated by Python. It had a tendency to aggressively smooth down 
data, which resulted in distorting the true surface forms and introducing errors. 

Local Polynomial Method produced varying results over the three surface groups. In the 
first group it was remarkably consistent; in the second group it was inconsistent; in the third 
group it was consistent. It may not be appropriate for terrains with substantial changes, as 
demonstrated in this study. 

Polynomial Regression and Moving Average are both wholly rejected and excluded from 
the current study for the purpose of representing surfaces. This is due to the fact that the sur-
faces they generated were not matched with the precise surfaces that were generated using 
Python. The Moving Average approach produced smoothed or improved surfaces that deviat-
ed from the original topography. 

Finally, the Data Metrics method is completely dismissed and omitted from the pre-sent 
study for its inability to accurately depict surfaces and compute volumes. This method not 
only fails to accurately match with the surfaces generated using Python, but it also causes the 
upper surface to completely overlap with the bottom surface, resulting in the materials be-
tween the surfaces being obscured or lost. As a result, the volumes obtained using this meth-
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od are zero, rendering it entirely inappropriate for both calculating volumes and depicting 
three-dimensional topography. 

In summary, it can be concluded that, for precise surface generation and volume calcula-
tion in geospatial applications, it is strongly advised to utilize methods such as Kriging, In-
verse Distance to A Power, Triangulation with Linear Interpolation, Minimum Curvature, 
Nearest Neighbor, Radial Basis Function, and Modified Shepard's Method. These methods 
are highly proficient at capturing the complexities of many terrains, ranging from rugged 
Mountains to gently sloping plains.  

This study emphasizes the significance of choosing suitable gridding techniques accord-
ing to the distinct features of the terrain in order to guarantee reliable and precise geospatial 
analysis. Researchers and practitioners can improve the accuracy of their topographical and 
volumetric investigations by comprehending the advantages and constraints of each method 
and making informed judgments accordingly. 
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