The Use of Innovative Technologies in Education:

analysis of effectiveness and implementation at different levels of education

Autores

  • Inna Koreneva Oleksandr Dovzhenko Hlukhiv National Pedagogical University
  • Nataliia Myroshnychenko Donetsk State University of Internal Affairs
  • Liubov Mykhailenko Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
  • Olha Matiash Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
  • Hanna Kuzmenko Interregional Academy of Personal Management

DOI:

https://doi.org/10.14571/brajets.v16.n3.625-638

Palavras-chave:

higher education innovative technologies, education for sustainable development, intending biology teachers training, education level

Resumo

A integração de tecnologias inovadoras no processo educacional pode melhorar significativamente a compreensão e o envolvimento dos alunos com o assunto. O artigo trata da questão da implementação de tecnologias educacionais inovadoras no ensino de biologia em diferentes níveis de ensino. O artigo tem como objetivo pesquisar as tecnologias inovadoras mais utilizadas e eficazes para o ensino de biologia em estabelecimentos de ensino ucranianos. Para atingir o objetivo da pesquisa, utilizou-se um conjunto de métodos: teóricos: análise de fontes psicológicas, pedagógicas e metódicas; empírico: questionários, entrevistas; gráficos. Os resultados da pesquisa descobriram que os alunos têm a oportunidade de resolver uma série de problemas acadêmicos no curso de tecnologias educacionais modernas. Foi revelado que as tecnologias inovadoras mais eficazes para o ensino de biologia nas instituições de ensino ucranianas são software de simulação, realidade virtual e realidade aumentada, laboratórios online, gamificação, plataformas colaborativas online, aplicativos móveis, plataformas de aprendizagem personalizadas, ferramentas de análise de dados e kits de biotecnologia. . Os resultados mostram que a maioria dos professores jovens (1 a 10 anos de experiência profissional) implementam tecnologias educativas modernas. A pesquisa permitiu determinar os aplicativos móveis mais eficazes para o aprendizado de biologia, projetados para fornecer aos alunos formas interativas e envolventes de aprender conceitos de biologia em seus smartphones e tablets. Os resultados apontam para as plataformas colaborativas online mais utilizadas no processo educativo: Google Workspace for Education (ensino secundário) e Moodle (ensino superior).

Referências

Ageitos, N., Puig, B., & Colucci-Gray, L. (2019). Examining reasoning practices and epistemic actions to explore students’ understanding of genetics and evolution. Science & Education, 28(9), pp 1209-1233. Available at: https://doi.org/10.1007/s11191-019-00086-6

Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, pp 334-342. Available at: https://doi.org/10.1016/j.chb.2015.12.054

Alpert, W., Couch, K., & Harmon, O. (2016). A randomized assessment of online learning. American Economic Review. 106 (5), pp 378-382. Available at: https://www.aeaweb.org/articles?id=10.1257/aer.p20161057

Anđić, B., Ulbrich, E., Dana-Picard, T. et al. (2023). A Phenomenography Study of STEM Teachers’ Conceptions of Using Three-Dimensional Modeling and Printing (3DMP) in Teaching. J Sci Educ Technol 32, pp 45-60. Available at: https://doi.org/10.1007/s10956-022-10005-0

Bakhov, I., Opolska, N., Bogus, M., Anishchenko, V., & Biryukova, Y. (2021). Emergency distance education in the conditions of COVID-19 pandemic: Experience of ukrainian universities. Education Sciences, 11(7) doi:10.3390/educsci11070364

Banda, H.J., & Nzabahimana, J. (2023). The Impact of Physics Education Technology (PhET) Interactive Simulation-Based Learning on Motivation and Academic Achievement Among Malawian Physics Students. J Sci Educ Technol 32, pp 127-141. Available at: https://doi.org/10.1007/s10956-022-10010-3

Bılyk, V., Yashchuk, S., Marchak, T., Tkachenko, S., & Goncharova, V. (2021). Organization of the Educational Process on Natural Science Training in Higher Education Institutions on the Basis of Innovation and Heuristics. Postmodern Openings, 12(2), pp 78-108. Available at: https://doi.org/10.18662/po/12.2/298

Cairns, D., Dickson, M., & McMinn, M. (2021). Feeling like a Scientist: Factors affecting students’ selections of technology tools in the science classroom. Journal of Science Education and Technology, 30(6), pp 766-776. Available at: https://doi.org/10.1007/s10956-021-09917-0

de Jong, T., Gillet, D., Rodríguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., & Law, E. (2021). Understanding teacher design practices for digital inquiry–based science learning: The case of Go-Lab. Educational Technology Research and Development, 69(2), pp 417-444. Available at: https://doi.org/10.1007/s11423-020-09904-z

Develaki, M. (2019). Methodology and epistemology of computer simulations and implications for science education. Journal of Science Education and Technology, 28(4), pp 353-370. Available at: https://doi.org/10.1007/s10956-019-09772-0

Feitosa, R. A., & Dias, A. M. (2019). Articulation between teaching, research and extension: tutorial education program (PET) contributions for biology students. Educacao & formacao, 4(12), pp 169-190. Available at: https://doi.org/10.25053/redufor.v4i12.819

Gnesdilow, D., & Puntambekar, S. (2021). Comparing middle school students’ science explanations during physical and virtual laboratories. Journal of Science Education and Technology, pp 1-12. Available at: https://doi.org/10.1007/s10956-021-09941-0

Gnidovec, T., Žemlja, M., Dolenec, A., & Torkar, G. (2020). Using augmented reality and the structure behavior function model to teach lower secondary school students about the human circulatory system. Journal of Science Education Technology, 29(774), p. 784. Available at: https://doi.org/10.1007/s10956-020-09850-8

Grund, J., & Brock, A. (2020). Education for sustainable development in Germany: not just desired but also effective for transformative action. Sustainability, 12(7), 2838. Available at: https://doi.org/10.3390/su12072838

Hartadiyati, E., Wiyanto, Rusilowati, A., & Prasetyo, A. (2020). Pedagogical content knowledge (PCK) of prospective biology teacher on respiratory system material to education for sustainable development. Journal of Physics: Conference Series, 1521, 42034. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1521/4/042034

Heradio, R., de la Torre, L., & Dormido, S. (2016). Virtual and remote labs in control education: A survey. Annual Reviews in Control, 42, pp 1-10. Available at: https://doi.org/10.1016/j.arcontrol.2016.08.001

Iatsyshyn, A. V., Kovach, V. O., Romanenko, Y. O., & Iatsyshyn, A. V. (2019). Cloud services application ways for preparation of future PhD. Paper presented at the CEUR Workshop Proceedings, , 2433 197-216.

Lee, S. W. Y., Tsai, C. C. (2013). Technology-supported Learning in Secondary and Undergraduate Biological Education: Observations from Literature Review. Sci Educ Technol 22, pp 226-233. Available at: https://doi.org/10.1007/s10956-012-9388-6

Lin, C. J., Wu, T. T., Wang, T. H., Pedaste, M., Huang, Y. M. (2022). Exploring Student Discussion Topics in STEAM Hands-On Collaborative Activity. In: Huang, Y.M., Cheng, S.C., Barroso, J., Sandnes, F.E. (eds) Innovative Technologies and Learning. ICITL. Lecture Notes in Computer Science, vol 13449. Springer, Cham. Available at: https://doi.org/10.1007/978-3-031-15273-3_2

Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D., & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9, 2364. Available at: https://doi.org/10.3389/fpsyg.2018.02364

Ministers of Ukraine. (2020). The concept of development of science, technology, engineering and mathematics education (STEM education). Zakon Rada. Available at: https://zakon.rada.gov.ua/laws/show/960-2020-%D1%80#Text

Molderez, I., & Fonseca, E. (2018). The efficacy of real-world experiences and service learning for fostering competences for sustainable development in higher education. Journal of cleaner production, 172, pp 4397-4410. Available at: https://doi.org/10.1016/j.jclepro.2017.04.062

Mystakidis, S., Berki, E., & Valtanen, J. P. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: A systematic literature review. Applied Sciences, 11(5), p. 2412. Available at: https://doi.org/10.3390/app11052412

O'Flaherty, J., & Liddy, M. (2018). The impact of development education and education for sustainable development interventions: a synthesis of the research. Environmental education research, 24(7), pp 1031-1049. Available at: https://doi.org/10.1080/13504622.2017.1392484

Osti, F., de Amicis, R., Sanchez, C. A., Tilt, A. B., Prather, E., & Liverani, A. (2021). A VR training system for learning and skills development for construction workers. Virtual Reality, 25(2), pp 523-538. Available at: https://doi.org/10.1007/s10055-020-00470-6

Palos-Sanchez, P. R., Folgado-Fernandez, J. A., & Rojas-Sanchez, M. (2022). Virtual reality technology: Analysis based on text and opinion mining. Mathematical Biosciences and Engineering, 19(8), pp 7856-7885. Available at: https://doi.org/10.3934/mbe.2022367

Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), pp 785-797. Available at: https://doi.org/10.1037/edu0000241

Paszkiewicz, A., Salach, M., Dymora, P., Bolanowski, M., Budzik, G., & Kubiak, P. (2021). Methodology of implementing virtual reality in education for industry 4.0. Sustainability, 13(9), 5049. Available at: https://doi.org/10.3390/su13095049

Rojas-Sánchez, M. A., Palos-Sánchez, P. R. & Folgado-Fernández, J. A. Systematic literature review and bibliometric analysis on virtual reality and education. Educ Inf Technol 28, pp 155-192 (2023). Available at: https://doi.org/10.1007/s10639-022-11167-5

Rudyshyn, S., Koreneva, I., Yakushko, K., Babenko-Zhyrnova, M., Lupak, N. (2022). Simulation of Educational and Professional Training of Students. Apuntes Universitarios, 12(2), pp 114-132. Available at: https://doi.org/10.17162/au.v12i2.1036

Sari, D. P., Wulan, A. R., & Solihat, R. (2018). Developing 21st century student research skills through assessment matrix and edmodo in biology project. Journal of Physics: Conference Series, 1157(2), 022093. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022093

Sebastian-Lopez, M., & de Miguel Gonzalez, R. (2020). Mobile learning for sustainable development and environmental teacher education. Sustainability, 12(22), 9757. Available at: https://doi.org/10.3390/su12229757

Sidorovich, M., Tsurul, O., Romaniuk, R., Solona, Y., Kundelchuk, O., Koreneva, I., Blazhko, O. (2022). Education for Sustainable Development in Training of Future Biology Teachers for Research Activity: An Applied Aspect. Revista Românească pentru Educaţie Multidimensională, 14(2), pp 19-49. Available at: https://doi.org/10.18662/rrem/14.2/565

Sun, J. C. Y., Ye, S. L., Yu, S. J. et al. (2023). Effects of Wearable Hybrid AR/VR Learning Material on High School Students’ Situational Interest, Engagement, and Learning Performance: the Case of a Physics Laboratory Learning Environment. Sci Educ Technol 32, pp 1-12. Available at: https://doi.org/10.1007/s10956-022-10001-4

Ulus, B., & Oner, D. (2020). Fostering middle school students’ knowledge integration using the Web-based inquiry science environment (WISE). Journal of Science Education and Technology, 29(2), pp 242-256. Available at: https://doi.org/10.1007/s10956-019-09809-4

UNESCO Strategy on Technological Innovation in Education (2022-2025). Available at: https://unesdoc.unesco.org/ark:/48223/pf0000378847

Wang, H.-Y., & Sun, J. C.-Y. (2021). Real-time virtual reality co-creation: Collective intelligence and consciousness for student engagement and focused attention within online communities. Interactive Learning Environments. Available at: https://doi.org/10.1080/10494820.2021.1928711

Zhai, X., & Shi, L. (2020). Understanding how the perceived usefulness of mobile technology impacts physics learning achievement: A pedagogical perspective. Journal of Science Education and Technology, 29(6), pp 743-757. Available at: https://doi.org/10.1007/s10956-020-09852-6

Zinovieva, I. S., Artemchuk, V. O., Iatsyshyn, A. V., Popov, O. O., Kovach, V. O., Iatsyshyn, A. V., . . . Radchenko, O. V. (2021). The use of online coding platforms as additional distance tools in programming education.Paper presented at the Journal of Physics: Conference Series, , 1840(1) doi:10.1088/1742-6596/1840/1/012029

Downloads

Publicado

2023-09-23

Edição

Secção

The global development of innovative technologies and their impact on the educat