A Bibliometric Analysis of Paper in the Area of Wind, Weibull, Hydrogen and Homer Software Based on Scopus

Authors

  • Carla Andrade Universidade Federal do Ceará
  • Mona Lisa Moura de Oliveira Universidade Estadual do Ceará, UECE, Fortaleza, CE, Brasil
  • Franciso Olímpio Moura Carneiro Universidade UNILAB, Fortaleza, CE, Brasil
  • André Valente Bueno Universidade Federal do Ceará, UFCE, Fortaleza, CE, Brasil
  • Fernanda Leite Lobo Universidade Federal do Ceará, UFCE, Fortaleza, CE, Brasil

DOI:

https://doi.org/10.14571/brajets.v16.n4.1168-1184

Keywords:

Green hydrogen, Bibliometrix, wind energy, Weibull, HomerPro

Abstract

Green hydrogen has become the center of attention on the world stage, with its high efficiency and production versatility, where more and more studies are produced related to this topic. One of the renewable sources responsible to produce green hydrogen is wind energy. And the wind is the determining factor to produce this energy and for its viability, as the power generated by a turbine varies with the cube of the wind speed, and one of the statistical distributions used to analyze the behavior of the wind in a region is the Weibull distribution. Furthermore, there is software that carries out the study of the feasibility of implementing a wind farm and hydrogen production, called Homer Pro. Therefore, this work aims to analyze articles related to wind energy, hydrogen, the Homer Pro software, and the Weibull distribution to understand how research is developing in this promising area. To do this, a search was carried out in the Scopus database, considering some keywords and then an analysis of this set of data found using the Bibliometrix tool was carried out. The objective of this work is to identify the evolution of the topic and show Brazil's position.

References

Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068–1079. https://doi.org/10.1016/j.enconman.2019.06.068

Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2020). Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 120, 109620. https://doi.org/10.1016/j.rser.2019.109620

Abedi, S., Alimardani, A., Gharehpetian, G. B., Riahy, G. H., & Hosseinian, S. H. (2012). A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems. Renewable and Sustainable Energy Reviews, 16(3), 1577–1587. https://doi.org/10.1016/j.rser.2011.11.030

Ahmad, J., Imran, M., Ali, S. F., Adnan, M., Ashraf, S. R., Hussain, Z., & Shoaib, M. (2021). Wind-to-hydrogen production potential for selected sites in pakistan. IEEE Access, 9, 134874–134898. https://doi.org/10.1109/ACCESS.2021.3116259

Akhtari, M. R., & Baneshi, M. (2019). Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Conversion and Management, 188, 131–141. https://doi.org/10.1016/j.enconman.2019.03.067

Alavi, O., Mostafaeipour, A., & Qolipour, M. (2016). Analysis of hydrogen production from wind energy in the southeast of Iran. International Journal of Hydrogen Energy, 41(34), 15158–15171. https://doi.org/10.1016/j.ijhydene.2016.06.092

Alavi, O., Mostafaeipour, A., Sedaghat, A., & Qolipour, M. (2017). Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvesting and Systems, 4(4), 143–163. https://doi.org/10.1515/ehs-2017-0003

Alavi, O., Najafi, P., & Hooshmand Viki, A. (2016). Influence of noise of wind speed data on a wind-hydrogen system. International Journal of Hydrogen Energy, 41(48), 22751–22759. https://doi.org/10.1016/j.ijhydene.2016.10.032

Almutairi, K., Hosseini Dehshiri, S. S., Hosseini Dehshiri, S. J., Mostafaeipour, A., Jahangiri, M., & Techato, K. (2021). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 36, 100684. https://doi.org/10.1016/j.esr.2021.100684

Almutairi, K., Mostafaeipour, A., Jahanshahi, E., Jooyandeh, E., Himri, Y., Jahangiri, M., Issakhov, A., Chowdhury, S., Hosseini Dehshiri, S., Hosseini Dehshiri, S., & Techato, K. (2021). Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study. Sustainability, 13(8), 4524. https://doi.org/10.3390/su13084524

Ampah, J. D., Jin, C., Agyekum, E. B., Afrane, S., Geng, Z., Adun, H., Yusuf, A. A., Liu, H., & Bamisile, O. (2023). Performance analysis and socio-enviro-economic feasibility study of a new hybrid energy system-based decarbonization approach for coal mine sites. Science of The Total Environment, 854, 158820. https://doi.org/10.1016/j.scitotenv.2022.158820

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Ashrafi, Z. N., Ghasemian, M., Shahrestani, M. I., Khodabandeh, E., & Sedaghat, A. (2018). Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. International Journal of Hydrogen Energy, 43(6), 3110–3132. https://doi.org/10.1016/j.ijhydene.2017.12.154

Beccali, M., Brunone, S., Cellura, M., & Franzitta, V. (2008). Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings. Renewable Energy, 33(3), 366–382. https://doi.org/10.1016/j.renene.2007.03.013

Bornmann, L., & Daniel, H.-D. (2007). What do we know about theh index? Journal of the American Society for Information Science and Technology, 58(9), 1381–1385. https://doi.org/10.1002/asi.20609

Cano, A., Jurado, F., Sánchez, H., Fernández, L. M., & Castañeda, M. (2014). Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies. Journal of the Energy Institute, 87(4), 330–340. https://doi.org/10.1016/j.joei.2014.03.028

Chade, D., Miklis, T., & Dvorak, D. (2015). Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study. Renewable Energy, 76, 204–211. https://doi.org/10.1016/j.renene.2014.11.023

Chien, F., Ngo, Q.-T., Hsu, C.-C., Chau, K. Y., & Mohsin, M. (2021). Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification. Environmental Science and Pollution Research, 28(46), 65960–65973. https://doi.org/10.1007/s11356-021-15517-7

Cozzolino, R., Tribioli, L., & Bella, G. (2016). Power management of a hybrid renewable system for artificial islands: A case study. Energy, 106, 774–789. https://doi.org/10.1016/j.energy.2015.12.118

Dalton, G. J., Lockington, D. A., & Baldock, T. E. (2009a). Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renewable Energy, 34(4), 1134–1144. https://doi.org/10.1016/j.renene.2008.06.018

Dalton, G. J., Lockington, D. A., & Baldock, T. E. (2009b). Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renewable Energy, 34(4), 955–964. https://doi.org/10.1016/j.renene.2008.08.012

Dokhani, S., Assadi, M., & Pollet, B. G. (2023). Techno-economic assessment of hydrogen production from seawater. International Journal of Hydrogen Energy, 48(26), 9592–9608. https://doi.org/10.1016/j.ijhydene.2022.11.200

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Duman, A. C., & Güler, Ö. (2018). Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society, 42, 107–126. https://doi.org/10.1016/j.scs.2018.06.029

Esteves, N. B., Sigal, A., Leiva, E. P. M., Rodríguez, C. R., Cavalcante, F. S. A., & de Lima, L. C. (2015). Wind and solar hydrogen for the potential production of ammonia in the state of Ceará – Brazil. International Journal of Hydrogen Energy, 40(32), 9917–9923. https://doi.org/10.1016/j.ijhydene.2015.06.044

Fazelpour, F., Soltani, N., & Rosen, M. A. (2016). Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 41(19), 7732–7743. https://doi.org/10.1016/j.ijhydene.2016.01.113

Gallo, M. A., & García Clúa, J. G. (2023). Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange. Renewable Energy, 216, 118990. https://doi.org/10.1016/j.renene.2023.118990

Geovanni, H. G., Orlando, L. D., Rafael, P. D., Alberto, S. J., & Sebastian, P. J. (2010). Analysis of the current methods used to size a wind/hydrogen/fuel cell-integrated system: A new perspective. International Journal of Energy Research, 34(12), 1042–1051. https://doi.org/10.1002/er.1626

Ghazinoory, S., Ameri, F., & Farnoodi, S. (2013). An application of the text mining approach to select technology centers of excellence. Technological Forecasting and Social Change, 80(5), 918–931. https://doi.org/10.1016/j.techfore.2012.09.001

Gökçek, M., & Kale, C. (2018a). Optimal design of a Hydrogen Refuelling Station (HRFS) powered by Hybrid Power System. Energy Conversion and Management, 161, 215–224. https://doi.org/10.1016/j.enconman.2018.02.007

Gökçek, M., & Kale, C. (2018b). Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-çeşme. International Journal of Hydrogen Energy, 43(23), 10615–10625. https://doi.org/10.1016/j.ijhydene.2018.01.082

Hoseinzadeh, S., & Astiaso Garcia, D. (2022). Techno-economic assessment of hybrid energy flexibility systems for islands’ decarbonization: A case study in Italy. Sustainable Energy Technologies and Assessments, 51, 101929. https://doi.org/10.1016/j.seta.2021.101929

Iqbal, W., Yumei, H., Abbas, Q., Hafeez, M., Mohsin, M., Fatima, A., Jamali, M., Jamali, M., Siyal, A., & Sohail, N. (2019). Assessment of Wind Energy Potential for the Production of Renewable Hydrogen in Sindh Province of Pakistan. Processes, 7(4), 196. https://doi.org/10.3390/pr7040196

Islam, S. M. (2012). Increasing Wind Energy Penetration Level by Using Pumped Hydro Storage in Island Micro-Grid System. International Journal of Energy and Environmental Engineering, 3(1), 9. https://doi.org/10.1186/2251-6832-3-9

Jahangiri, M., Haghani, A., Alidadi Shamsabadi, A., Mostafaeipour, A., & Pomares, L. M. (2019). Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants. Energy Strategy Reviews, 23, 23–32. https://doi.org/10.1016/j.esr.2018.12.003

Jahangiri, M., Shamsabadi, A. A., Mostafaeipour, A., Rezaei, M., Yousefi, Y., & Pomares, L. M. (2020). Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. International Journal of Hydrogen Energy, 45(27), 13862–13875. https://doi.org/10.1016/j.ijhydene.2020.03.101

Jahangiri, M., Soulouknga, M. H., Bardei, F. K., Shamsabadi, A. A., Akinlabi, E. T., Sichilalu, S. M., & Mostafaeipour, A. (2019). Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. International Journal of Hydrogen Energy, 44(54), 28613–28628. https://doi.org/10.1016/j.ijhydene.2019.09.130

Kakavand, A., Sayadi, S., Tsatsaronis, G., & Behbahaninia, A. (2023). Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. International Journal of Hydrogen Energy, 48(38), 14170–14191. https://doi.org/10.1016/j.ijhydene.2022.12.285

Kalinci, Y., Dincer, I., & Hepbasli, A. (2017). Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. International Journal of Hydrogen Energy, 42(4), 2492–2503. https://doi.org/10.1016/j.ijhydene.2016.02.048

Kalinci, Y., Hepbasli, A., & Dincer, I. (2015). Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. International Journal of Hydrogen Energy, 40(24), 7652–7664. https://doi.org/10.1016/j.ijhydene.2014.10.147

Kar, S. K., Harichandan, S., & Roy, B. (2022). Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. International Journal of Hydrogen Energy, 47(20), 10803–10824. https://doi.org/10.1016/j.ijhydene.2022.01.137

Khan, M. J., & Iqbal, M. T. (2005). Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy, 30(6), 835–854. https://doi.org/10.1016/j.renene.2004.09.001

Khare, V., Nema, S., & Baredar, P. (2016). Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT. International Journal of Hydrogen Energy, 41(38), 16743–16751. https://doi.org/10.1016/j.ijhydene.2016.06.228

Kodicherla, S. P. K., Kan, C., & Nanduri, P. M. B. R. K. (2020). Likelihood of wind energy assisted hydrogen production in three selected stations of Fiji Islands. International Journal of Ambient Energy, 41(7), 823–832. https://doi.org/10.1080/01430750.2018.1492444

Koholé, Y. W., Fohagui, F. C. V., Djiela, R. H. T., & Tchuen, G. (2023). Wind energy potential assessment for co-generation of electricity and hydrogen in the far North region of Cameroon. Energy Conversion and Management, 279, 116765. https://doi.org/10.1016/j.enconman.2023.116765

Laengle, S., Merigó, J. M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., Dyson, R. G., Oliveira, J. F., & Teunter, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803–816. https://doi.org/10.1016/j.ejor.2017.04.027

Li, C., & Zuo, X. (2022). Effects of Hydrogen Storage System and Renewable Energy Sources for Optimal Bidding Strategy in Electricity Market. Energy Engineering, 119(5), 1879–1903. https://doi.org/10.32604/ee.2022.020472

Liponi, A., Frate, G. F., Baccioli, A., Ferrari, L., & Desideri, U. (2022). Impact of wind speed distribution and management strategy on hydrogen production from wind energy. Energy, 256, 124636. https://doi.org/10.1016/j.energy.2022.124636

Luta, D. N., & Raji, A. K. (2018). Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation. International Journal of Hydrogen Energy, 43(20), 9535–9548. https://doi.org/10.1016/j.ijhydene.2018.04.032

Luta, D. N., & Raji, A. K. (2019). Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy, 166, 530–540. https://doi.org/10.1016/j.energy.2018.10.070

Machhammer, O., & Janisch, I. (2023). Impact of Weibull Wind Speed Distribution on the Costs of Producing Power‐to‐X Products. Chemical Engineering & Technology, 46(9), 1935–1949. https://doi.org/10.1002/ceat.202300189

Maleki, A., & Pourfayaz, F. (2015). Sizing of stand-alone photovoltaic/wind/diesel system with battery and fuel cell storage devices by harmony search algorithm. Journal of Energy Storage, 2, 30–42. https://doi.org/10.1016/j.est.2015.05.006

Mohsin, M., Rasheed, A. K., & Saidur, R. (2018). Economic viability and production capacity of wind generated renewable hydrogen. International Journal of Hydrogen Energy, 43(5), 2621–2630. https://doi.org/10.1016/j.ijhydene.2017.12.113

Mostafaeipour, A., Khayyami, M., Sedaghat, A., Mohammadi, K., Shamshirband, S., Sehati, M.-A., & Gorakifard, E. (2016). Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, 41(15), 6200–6210. https://doi.org/10.1016/j.ijhydene.2016.03.038

Mostafaeipour, A., Rezaei, M., Moftakharzadeh, A., Qolipour, M., & Salimi, M. (2019). Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 44(16), 7983–7995. https://doi.org/10.1016/j.ijhydene.2019.02.047

Mostofi, F., & Shayeghi, H. (2012). Feasibility and optimal reliable design of renewable hybrid energy system for rural electrification in Iran. International Journal of Renewable Energy Research, 2(4), 574–582.

Ohunakin, O. S., Matthew, O. J., Adaramola, M. S., Atiba, O. E., Adelekan, D. S., Aluko, O. O., Henry, E. U., & Ezekiel, V. U. (2023). Techno-economic assessment of offshore wind energy potential at selected sites in the Gulf of Guinea. Energy Conversion and Management, 288, 117110. https://doi.org/10.1016/j.enconman.2023.117110

Ramos, V., & Iglesias, G. (2014). Wind Power Viability on a Small Island. International Journal of Green Energy, 11(7), 741–760. https://doi.org/10.1080/15435075.2013.823434

Razmjoo, A., Gakenia Kaigutha, L., Vaziri Rad, M. A., Marzband, M., Davarpanah, A., & Denai, M. (2021). A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO 2 emissions in a high potential area. Renewable Energy, 164, 46–57. https://doi.org/10.1016/j.renene.2020.09.042

Rehman, S., Habib, H. U. R., Wang, S., Buker, M. S., Alhems, L. M., & Al Garni, H. Z. (2020). Optimal Design and Model Predictive Control of Standalone HRES: A Real Case Study for Residential Demand Side Management. IEEE Access, 8, 29767–29814. https://doi.org/10.1109/ACCESS.2020.2972302

Rezaei, M., Dampage, U., Das, B. K., Nasif, O., Borowski, P. F., & Mohamed, M. A. (2021). Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems. Processes, 9(8), 1468. https://doi.org/10.3390/pr9081468

Rezaei, M., Khalilpour, K. R., & Jahangiri, M. (2020). Multi-criteria location identification for wind/solar based hydrogen generation: The case of capital cities of a developing country. International Journal of Hydrogen Energy, 45(58), 33151–33168. https://doi.org/10.1016/j.ijhydene.2020.09.138

Rezaei, M., Mostafaeipour, A., Jafari, N., Naghdi-Khozani, N., & Moftakharzadeh, A. (2020). Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran. Journal of Engineering, Design and Technology, 18(6), 1951–1969. https://doi.org/10.1108/JEDT-06-2019-0154

Rezaei, M., Mostafaeipour, A., Qolipour, M., & Arabnia, H.-R. (2018). Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran. Energy and Environment, 29(3), 333–357. https://doi.org/10.1177/0958305X17750052

Rezaei, M., Mostafaeipour, A., Qolipour, M., & Momeni, M. (2019). Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran. Frontiers in Energy, 13(3), 539–550. https://doi.org/10.1007/s11708-019-0635-x

Saenz-Aguirre, A., Fernandez-Gamiz, U., Zulueta, E., Aramendia, I., & Teso-Fz-Betono, D. (2022). Flow control based 5 MW wind turbine enhanced energy production for hydrogen generation cost reduction. International Journal of Hydrogen Energy, 47(11), 7049–7061. https://doi.org/10.1016/j.ijhydene.2020.01.022

Sedaghat, A., Mostafaeipour, A., Rezaei, M., Jahangiri, M., & Mehrabi, A. (2020). A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. International Journal of Hydrogen Energy, 45(32), 15888–15903. https://doi.org/10.1016/j.ijhydene.2020.04.028

Siyal, S. H., Mentis, D., & Howells, M. (2015). Economic analysis of standalone wind-powered hydrogen refueling stations for road transport at selected sites in Sweden. International Journal of Hydrogen Energy, 40(32), 9855–9865. https://doi.org/10.1016/j.ijhydene.2015.05.021

Song, H., Guo, H., Wang, Y., Lao, J., Zhu, H., Tang, L., & Liu, X. (2021). A novel hybrid energy system for hydrogen production and storage in a depleted oil reservoir. International Journal of Hydrogen Energy, 46(34), 18020–18031. https://doi.org/10.1016/j.ijhydene.2020.09.081

Stojkovic, S., & Bakic, V. (2016). Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications. Thermal Science, 20(suppl. 1), 261–273. https://doi.org/10.2298/TSCI150308195S

Tribioli, L., Cozzolino, R., Evangelisti, L., & Bella, G. (2016). Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems. Energies, 9(8), 661. https://doi.org/10.3390/en9080661

Türkay, B. E., & Telli, A. Y. (2011). Economic analysis of standalone and grid connected hybrid energy systems. Renewable Energy, 36(7), 1931–1943. https://doi.org/10.1016/j.renene.2010.12.007

Türkay, B., & Telli, A. Y. (2011). An economic analysis of grid-connected hybrid energy systems. Energy Sources, Part B: Economics, Planning and Policy, 6(3), 228–241. https://doi.org/10.1080/15567241003614529

Turkdogan, S. (2021). Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, an International Journal, 24(2), 397–404. https://doi.org/10.1016/j.jestch.2020.08.017

Yazdani, H., Baneshi, M., & Yaghoubi, M. (2023). Techno-economic and environmental design of hybrid energy systems using multi-objective optimization and multi-criteria decision making methods. Energy Conversion and Management, 282, 116873. https://doi.org/10.1016/j.enconman.2023.116873

Published

2024-03-19

How to Cite

Andrade, C., Moura de Oliveira, M. L. ., Moura Carneiro, F. O., Valente Bueno , A., & Leite Lobo, F. (2024). A Bibliometric Analysis of Paper in the Area of Wind, Weibull, Hydrogen and Homer Software Based on Scopus. Cadernos De Educação Tecnologia E Sociedade, 16(4), 1168–1184. https://doi.org/10.14571/brajets.v16.n4.1168-1184

Issue

Section

Article