WEARABLE SENSOR TECHNOLOGY IN HEALTH MONITORING AND SPORT PSYCHOLOGY EDUCATION

Authors

  • Metin Pekgor Swinburne University of Technology Melbourne
  • Aydolu Algin Akdeniz University Antalya Türkiye
  • Turhan Toros Mersin University, Faculty of Sport Sciences Department of Coaching Education
  • Emre Serin Mersin University, Faculty of Sport Sciences Department of Coaching Education
  • Abdulaziz Kulak Physical Education and Sports School, Harran University
  • Tolga Tek Selcuk University, Faculty of Sport Sciences Department of Sport Management,

Keywords:

Wearable Sensors, Health Monitoring, Sports Psychology, Educational Applications, Real-Time Data Analytics

Abstract

This paper, structured as a review, provides a comprehensive analysis of wearable sensor technology's role in health monitoring and sports psychology education. It synthesizes current research on the applications, benefits, and challenges of wearable sensors in healthcare and sports psychology, with a particular focus on their educational impact. Through a review approach, the paper examines various types of wearable sensors, explores their implications for personalized health management and athletic training, and discusses future advancements and ethical considerations in the field. This review serves as a resource for researchers, educators, and practitioners interested in the integration of wearable technology in health and sports sciences.

References

Abdulla, Al, Mamun., Mehmet, Rasit, Yuce. (2019). Sensors and Systems for Wearable Environmental Monitoring Toward IoT-Enabled Applications: A Review. IEEE Sensors Journal, doi: 10.1109/JSEN.2019.2919352

Abhishek, Singh., Sanjeev, Kumar, Awasthi. (2024). Technology Integration in Physical Education: Exploring the Use of Wearable Devices and Virtual Reality for Enhancing Student Engagement and Learning Outcomes. Innovative research thoughts, doi: 10.36676/irt.v10.i2.09

Anita, Antony. (2024). Flexible and Wearable Biosensors: Revolutionizing Health Monitoring. doi: 10.1007/978-981-97-3048-3_12

Anna, Maria, Becker., Torsten, Masson., Carolin, Helbig., Abdelrhman, Mohamdeen., Uwe, Schlink. (2023). Wearable sensors increase perceived environmental health threat in cyclists and pedestrians: A randomized field study. doi: 10.1016/j.jth.2023.101660

Atul, Sharma., Mihaela, Badea., Swapnil, Tiwari., Jean-Louis, Marty. (2021). Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules, doi: 10.3390/MOLECULES26030748

Baig, M. M., & GholamHosseini, H. (2020). Future of wearable technology in healthcare: Challenges and opportunities. Journal of Healthcare Engineering, 2020, 8892054. https://doi.org/10.1155/2020/8892054

Baig, M. M., Afifi, S., & GholamHosseini, H. (2021). Ethical considerations of wearable technology in healthcare. IEEE Reviews in Biomedical Engineering, 14, 64-76. https://doi.org/10.1109/RBME.2021.3062064

Baig, M. M., GholamHosseini, H., & Connolly, M. J. (2019). Mobile healthcare applications: System design review, critical issues and challenges. Australasian Physical & Engineering Sciences in Medicine, 42(1), 23-36. https://doi.org/10.1007/s13246-018-0736-6

Brendon, Ferrier., James, B., Lee., Alex, Mbuli., Daniel, Arthur, James. (2022). Translational Applications of Wearable Sensors in Education: Implementation and Efficacy. Sensors, doi: 10.3390/s22041675

Cadmus-Bertram, L. A., Marcus, B. H., Patterson, R. E., Parker, B. A., & Morey, B. L. (2015). Randomized trial of a Fitbit-based physical activity intervention for women. American Journal of Preventive Medicine, 49(3), 414-418. https://doi.org/10.1016/j.amepre.2015.01.020

Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92, 103139. https://doi.org/10.1016/j.jbi.2019.103139

Carolin, Helbig., Maximilian, Ueberham., Anna, Maria, Becker., Heike, Marquart., Uwe, Schlink. (2021). Wearable Sensors for Human Environmental Exposure in Urban Settings. doi: 10.1007/S40726-021-00186-4

Changfeng, Ning., Menglu, Li. (2023). The preventive effect of PNF stretching exercise on sports injuries in physical education based on IoT data monitoring.. Preventive Medicine, doi: 10.1016/j.ypmed.2023.107591

Chia-Jung, Cho., Ping-Yu, Chung., Ying-Wen, Tsai., Yu-Tong, Yang., Shih-Yu, Lin., Pin-Shiun, Huang. (2023). Stretchable Sensors: Novel Human Motion Monitoring Wearables. Nanomaterials, doi: 10.3390/nano13162375

Daniela, Lo, Presti., Chiara, Romano., Carlo, Massaroni., Nicola, Di, Stefano., Domenico, Formica., Emiliano, Schena. (2023). Wearable Sensors to Monitor Psychophysiological Response Induced by Musical Consonance and Dissonance. doi: 10.1109/bats59463.2023.10303095

Danyal, Khan., Naif, Al, Mudawi., Maha, Abdelhaq., Abdulwahab, Alazeb., Saud, S., Alotaibi., Asaad, Algarni., Ahmad, Samsul, Arifin, Jalal. (2024). A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity. doi: 10.3390/s24030735

Daphika, S., Dkhar., R., Shantha, Kumari., Supratim, Mahapatra., Divya, C., Pranjal, Chandra. (2022). Engineering Design, Implementation, and Sensing Mechanisms of Wearable Bioelectronic Sensors in Clinical Settings. Electroanalysis, doi: 10.1002/elan.202200154

Dempsey, P. C., Strain, T., Wijndaele, K., & Brage, S. (2020). Wearable-device-measured physical activity and future health risk. Nature Medicine, 26(11), 1385-1391. https://doi.org/10.1038/s41591-020-1012-3

Dkhar, D. S., Kumari, R., Mahapatra, S., Chandra, P., & Pranjal, C. (2022). Engineering design, implementation, and sensing mechanisms of wearable bioelectronic sensors in clinical settings. Electroanalysis, 34(7), 1051-1060. https://doi.org/10.1002/elan.202200154

Dubljević, V., & Ryan, M. J. (2018). Future directions in wearable sensor technology: Trends, challenges, and ethical considerations. Frontiers in Digital Health, 2, 83-92. https://doi.org/10.3389/fdgth.2018.00012

Fan, Wu., Christoph, Rudiger., Jean-Michel, Redoute., Mehmet, Rasit, Yuce. (2019). A wearable multi-sensor IoT network system for environmental monitoring. doi: 10.1007/978-3-030-02819-0_3

Filippo-Enrico, Cardini., Qiaoyang, Liu. (2022). Wearable Sweat Biosensors on Sports Analysis. doi: 10.54227/mlab.20220028

Florian, Daiber., Felix, Kosmalla. (2017). Tutorial on wearable computing in sports. doi: 10.1145/3098279.3119918

Khan, W. Z., & Xiang, Y. (2019). Ethical issues and challenges associated with data privacy in wearable sensor devices. IEEE Access, 7, 69992-70002. https://doi.org/10.1109/ACCESS.2019.2919572

Kimi, D., Dahl., Kristin, M., Dunford., Sarah, A., Wilson., Travis, Lee, Turnbull., Scott, Tashman. (2020). Wearable sensor validation of sports-related movements for the lower extremity and trunk.. Medical Engineering & Physics, doi: 10.1016/J.MEDENGPHY.2020.08.001

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 5802-5805. https://doi.org/10.1073/pnas.1218772110

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 5802-5805. https://doi.org/10.1073/pnas.1218772110

Lee, I., & Lee, K. (2020). The internet of things (IoT) in education: Future possibilities for wearable technology. Computers & Education, 145, 103840. https://doi.org/10.1016/j.compedu.2019.103840

Linying, Du. (2024). Application of Smart Wearable Devices in Sports Performance Analysis and Enhancement. Applied mathematics and nonlinear sciences, doi: 10.2478/amns-2024-1434

Lu, Zhen. (2024). Utilization and Effect Evaluation of Wearable Smart Devices in Sports Training. doi: 10.1109/icdsis61070.2024.10594554

Majid, Ali, Khan, Quaid., Ahmad, Jalal. (2020). Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm. Multimedia Tools and Applications, doi: 10.1007/S11042-019-08463-7

Malhi, G. S., & Bell, E. (2019). Ethics and privacy in the era of wearable technology: Considerations for mental health. The Lancet Psychiatry, 6(1), 10-12. https://doi.org/10.1016/S2215-0366(18)30484-4

María, A., Hernández-Mustieles., Yoshua, E., Lima-Carmona., Maxine, A., Pacheco-Ramírez., Axel, A., Mendoza-Armenta., José, Esteban, Romero-Gómez., César, F., Cruz-Gómez., Diana, C., Rodríguez-Alvarado., Jesús, G., Cruz-Garza., Alejandro, Arceo., Mauricio, A., Ramírez-Moreno., Jorge, de, J., Lozoya-Santos. (2024). Wearable Biosensor Technology in Education: A Systematic Review. doi: 10.20944/preprints202403.0831.v1

Martindale, A., Collins, D., & Daubney, J. (2005). Talent development: A guide for practice and research within sport psychology. Quest, 57(4), 353-375. https://doi.org/10.1080/00336297.2005.10491863

Mohammed, Jameel, Alsalhy., Ibrahem, Ahmed., Naseer, Ali, Hussien., Angham, khalid, Hussain., Ahmed, Hussian., Taha, Raad, Al-Shaikhli. (2023). Application of Wearable Sensors in Physical education for biomedical surveillance and human-machine interface. doi: 10.1109/aicera/icis59538.2023.10420331

Narender, Malishetty., Shivaranjani, S., Anusha, K., Sushma, B. (2019). Wearable real-time environment monitoring system. Journal of emerging technologies and innovative research

Pantelopoulos, A., & Bourbakis, N. G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 1-12. https://doi.org/10.1109/TSMCC.2009.2032660

Parinaz, Balkhi., Mehrdad, Moallem. (2022). A Multipurpose Wearable Sensor-Based System for Weight Training. Automation, doi: 10.3390/automation3010007

Park, Eung, Seok., Kim, Young, Jin. (2020). Sensing apparatus for biometric data.

Ploderer, B., Reitberger, W., & Fröhlich, P. (2017). Towards a future of flexible wearable technology. Wearable Technologies, 5, 75-83. https://doi.org/10.1016/j.weartech.2017.07.007

Quintana, D. S., Alvares, G. A., & Heathers, J. A. J. (2016). Guidelines for reporting articles on psychiatry and HRV analysis. Psychophysiology, 53(6), 817-826. https://doi.org/10.1111/psyp.12652

R., Jegan., Austy., B., Evangeline., W., S., Nimi. (2022). Wearable Environmental Monitoring System for Measurement of Environmental Parameters: A Pilot study. doi: 10.1109/ICAISS55157.2022.10010880

Reena, Olsen., Sayyida, S., Hasan., Joshua, J., Woo., Danyal, H., Nawabi., Prem, N., Ramkumar. (2024). The Fundamentals and Applications of Wearable Sensor Devices in Sports Medicine: A Scoping Review.. Arthroscopy, doi: 10.1016/j.arthro.2024.01.042

S., Lam, Po, Tang. (2015). Wearable sensors for sports performance. doi: 10.1016/B978-1-78242-229-7.00008-4

Sandu, Razvan, Enoiu., Denisa, Iulia, Brus., Veronica, Mîndrescu. (2023). New Technology in Education on Performance Analysis. Wearable Sensors Utility on Alpine Skiing. Revista Romaneasca pentru Educatie Multidimensionala, doi: 10.18662/rrem/15.4/793

Sara, Hooshmand., Panagiotis, Kassanos., Meysam, Keshavarz., Pelin, Duru., Cemre, Irmak, Kayalan., İzzet, Kale., Mustafa, K., Bayazit. (2023). Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. doi: 10.3390/s23208648

Seçkin, M., Çağdaş Seçkin, A., & Gencer, C. S. (2022). Biomedical Sensors and Applications of Wearable Technologies on Arm and Hand. Biomedical Technology Review, 3(1), 35-50. https://doi.org/10.1007/s44174-022-00002-7

Seung, Hwan, Chang. (2019). Wearable sensor unit for monitoring biometric information.

Shuyu, Fan., Lurui, Zhao., Mengyao, Fu., Haozhen, Chi., Dibo, Hou., Guangxin, Zhang., Yufeng, Wang., Yunqi, Cao. (2022). A Motion Adaptive Self-Powered Wearable Sensor for Biomechanical Energy Transduction and Human Gait Sensing. doi: 10.1109/CAC57257.2022.10055951

Smith, A., Jones, R., & Roberts, S. (2023). The role of wearable technology in chronic disease management: Current applications and future perspectives. Journal of Medical Technology, 15(2), 101-114. https://doi.org/10.1016/j.medtech.2023.01.015

Strain, T., Wijndaele, K., Dempsey, P.C. et al. Wearable-device-measured physical activity and future health risk. Nat Med 26, 1385–1391 (2020). https://doi.org/10.1038/s41591-020-1012-3

Stroiescu, Florin., Duggan, Denis. (2016). Wearable sports sensor.

Sun, Qizhen., Shijie, Tan., Yanpeng, Li., Tao, Liu., Wei, Zhang., Yan, Zhijun., Liu, Deming. (2019). Optical fiber type wearable human body motion sensor.

Tamminen, K. A., & Bennett, E. V. (2017). Athlete well-being and the role of the sport psychologist: Bridging theory and practice. Current Opinion in Psychology, 16, 115-118. https://doi.org/10.1016/j.copsyc.2017.05.016

Tokura, Akio., Kuwabara, Kei., Matsuoka, Hiroto., Ishihara, Takako., Wada, Toshiki., Higuchi, Yuichi., Hashimoto, Yuki. (2021). Wearable environment sensor device and monitoring system.

Trifan, A., Oliveira, M., & Oliveira, J. L. (2019). Passive sensing of health outcomes through smartphones: Systematic review of current solutions and possible limitations. JMIR mHealth and uHealth, 7(2), e12649. https://doi.org/10.2196/12649

Vladimir, Banković., Aleksandar, Živković., Nenad, Trunić. (2024). Enhancing Athletic Performance Through Wearable Technology Integration in Volleyball: A Pilot Study. doi: 10.15308/sinteza-2024-358-363

Walker, J., & Roberts, S. (2020). Leveraging wearable technology in sport psychology education: Opportunities and challenges. Journal of Sport Psychology in Action, 11(3), 181-192. https://doi.org/10.1080/21520704.2020.1776471

Wan-Ju, Chen. (2022). Application of Sensor-Based Intelligent Wearable Devices in Information Physical Education. Mathematical Problems in Engineering, doi: 10.1155/2022/5075425

Yoon, S., & Roberts, B. (2018). The rise of artificial intelligence and machine learning in wearable health technology. IEEE Journal of Biomedical and Health Informatics, 22(2), 369-375. https://doi.org/10.1109/JBHI.2018.2872983

Yu, Gu., Yi, Han., Xiangzhi, Liu., Ning, Zhang., Xinfeng, Zhang., Min, Pan., Shuoyu, Wang., Wei, Dong., Tao, Li. (2023). A Flexible Sensor and MIMU-Based Multisensor Wearable System for Human Motion Analysis. IEEE Sensors Journal, doi: 10.1109/JSEN.2022.3233653

Zhaofa, Zhang., Pan, Zhang., De, Suo, Zhang., Hong, Ping, Lin., Yuyue, Chen. (2022). Wearable Resistive-Type Sensors Based on Graphene Fibers for Monitoring Human Motions. ACS Applied Nano Materials, doi: 10.1021/acsanm.2c02202

Zheng, Ming., Wu, Wei., Li, Xingchen., Xu, Xuechun., Peng, Jixiang. (2019). Smart wearable device capable of sensing environmental information.

Zhongchen, Zhang., Xiaomei, Wang. (2024). Wearable Sports Smart Glasses Real-time Monitoring and Feedback Mechanism in Physical Education. EAI Endorsed Transactions on Pervasive Health and Technology, doi: 10.4108/eetpht.10.5531

Ziwei, Mo. (2024). Wearable strain sensor for motion capture. Journal of physics, doi: 10.1088/1742-6596/2786/1/012022

Published

2025-01-12

How to Cite

Pekgor, M., Algin, A., Toros, T. ., Serin, E. ., Kulak, A. ., & Tek, T. (2025). WEARABLE SENSOR TECHNOLOGY IN HEALTH MONITORING AND SPORT PSYCHOLOGY EDUCATION. Cadernos De Educação Tecnologia E Sociedade, 17(se5). Retrieved from https://brajets.com/brajets/article/view/1880

Issue

Section

Community Empowerment through Education, Technology and Infrastructure