Implementation of Machine Learning-Based Risk Prediction Models for Large-Scale Infrastructure Construction Projects in Urban Environments

Authors

  • Ali Hussain Alhamami Civil Engineering Department, College of Engineering. Najran University, Najran, Kingdom of Saudi Arabia ahalhamami@nu.edu.sa https://orcid.org/0009-0007-1455-2315

DOI:

https://doi.org/10.14571/brajets.v18.n1.330-346

Keywords:

construction risk prediction, gradient boosting decision trees, infrastructure projects, machine learning applications, urban construction management

Abstract

Large-scale infrastructure projects often use reactive approaches to manage construction risks. This can result in expensive delays and increased budgets. This study creates and tests a risk prediction framework that uses machine learning, specifically Gradient Boosting Decision Trees (GBDT), to help identify and address risks early in urban infrastructure construction. Data from 220 infrastructure projects, spanning from 2015 to 2024 and located in North America, Europe, and Asia, were analyzed. These projects had values between $50 million and $2 billion USD. The approach combined Principal Component Analysis and GBDT, handling 47 variables related to risk across six different risk areas. To test the model, 5-fold cross-validation was used, along with temporal validation, which involved setting aside the most recent 20% of projects. The GBDT model reached an overall prediction accuracy of 87.3%. It outperformed traditional methods by 23%. The ability to detect risks early on improved significantly, from 45% to 78%, and this led to an average cost reduction of 12.4%. Technical risks had the highest prediction accuracy, at 89.4%, while resource optimization saw a 25.7% improvement in equipment use. This machine learning-based framework is considered to significantly improve construction risk management. It offers better accuracy, earlier risk detection, and cost savings, suggesting it could be widely used in urban infrastructure construction.

References

Aljohani A., (2023), Predictive analytics and machine learning for real-time supply chain risk mitigation and agility, Sustainability, 15, 15088.

Alvand A., Mirhosseini S.M., Ehsanifar M., Zeighami E., Mohammadi A., (2023), Identification and assessment of risk in construction projects using the integrated FMEA-SWARA-WASPAS model under fuzzy environment: a case study of a construction project in Iran, International Journal of Construction Management, 23, 392–404. https://doi.org/10.1080/15623599.2021.1877875

Ashtari M.A., Ansari R., Hassannayebi E., Jeong J., (2022), Cost overrun risk assessment and prediction in construction projects: A Bayesian network classifier approach, Buildings, 12, 1660.

Ayubi Rad M., Ayubirad M.S., (2017), Comparison of artificial neural network and coupled simulated annealing based least square support vector regression models for prediction of compressive strength of high-performance concrete, Scientia Iranica, 24, 487–496.

Bahamid R.A., Doh S.I., Khoiry M.A., Kassem M.A., Al-Sharafi M.A., (2022), The current risk management practices and knowledge in the construction industry, Buildings, 12, 1016.

Cardellicchio A., Ruggieri S., Nettis A., Renò V., Uva G., (2023), Physical interpretation of machine learning-based recognition of defects for the risk management of existing bridge heritage, Engineering Failure Analysis, 149, 107237.

Chenya L., Aminudin E., Mohd S., Yap L.S., (2022), Intelligent risk management in construction projects: Systematic literature review, Ieee Access, 10, 72936–72954.

Chew A.W.Z., He R., Zhang L., (2025), Physics Informed Machine Learning (PIML) for Design, Management and Resilience-Development of Urban Infrastructures: A Review, Archives of Computational Methods in Engineering, 32, 399–439. https://doi.org/10.1007/s11831-024-10145-z

Dar I.S., Chand S., Shabbir M., Kibria B.G., (2023), Condition-index based new ridge regression estimator for linear regression model with multicollinearity, Kuwait Journal of Science, 50, 91–96.

De Santis E., Arnò F., Rizzi A., (2022), Estimation of fault probability in medium voltage feeders through calibration techniques in classification models, Soft Computing, 26, 7175–7193. https://doi.org/10.1007/s00500-022-07194-6

Di Sante M., Mazzieri F., Fratalocchi E., (2021), RECENT DEVELOPMENTS IN SITE SPECIFIC RISK ASSESSMENT FOR POLLUTED SITES, P-ESEM, 629.

Freddi F., Galasso C., Cremen G., Dall’Asta A., Di Sarno L., Giaralis A., Gutiérrez-Urzúa F., Málaga-Chuquitaype C., Mitoulis S.A., Petrone C., (2021), Innovations in earthquake risk reduction for resilience: Recent advances and challenges, International Journal of Disaster Risk Reduction, 60, 102267.

Garcia J., Villavicencio G., Altimiras F., Crawford B., Soto R., Minatogawa V., Franco M., Martínez-Muñoz D., Yepes V., (2022), Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions, Automation in Construction, 142, 104532.

Ghasemi, S., Meybodi, M. R., Fooladi, M. D. T., & Rahmani, A. M. (2018). A cost-aware mechanism for optimized resource provisioning in cloud computing. Cluster Computing, 21, 1381-1394.

Gondia A., Ezzeldin M., El-Dakhakhni W., (2022), Machine Learning–Based Decision Support Framework for Construction Injury Severity Prediction and Risk Mitigation, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 8, 04022024. https://doi.org/10.1061/AJRUA6.0001239

Hakiri A., Gokhale A., Yahia S.B., Mellouli N., (2024), A comprehensive survey on digital twin for future networks and emerging Internet of Things industry, Computer Networks, 110350.

Jiang H., Guo H., Sun Z., Xing Q., Zhang H., Ma Y., Li S., (2022), Projections of urban built-up area expansion and urbanization sustainability in China’s cities through 2030, Journal of Cleaner Production, 367, 133086.

Kaur, K., Kim, D., Jamshidi, A., & Zhang, L. (2025). Identifying Flaky Tests in Quantum Code: A Machine Learning Approach. arXiv preprint arXiv:2502.04471.

Khodabakhshian A., Puolitaival T., Kestle L., (2023), Deterministic and probabilistic risk management approaches in construction projects: A systematic literature review and comparative analysis, Buildings, 13, 1312.

Koh K.-Y., Ahmad S., Lee J., Suh G.-H., Lee C.-M., (2022), Hierarchical clustering on principal components analysis to detect clusters of highly pathogenic avian influenza subtype H5N6 epidemic across South Korean Poultry Farms, Symmetry, 14, 598.

Leanza A., Bonanno S., Suriano E., Amara G., Gigli C., (2017), The SWOT analysis applied to a high risk area as a strategy to increase sustainable local value chain, Procedia Environmental Science, Engineering and Management, 4, 69–76.

Li Q., Chen Q., Wu J., Qiu Y., Zhang C., Huang Y., Guo J., Yang B., (2023), XGBoost-based intelligent decision making of HVDC system with knowledge graph, Energies, 16, 2405.

Love P.E., Ika L.A., Pinto J.K., (2022), Homo heuristicus: From risk management to managing uncertainty in large-scale infrastructure projects, IEEE Transactions on Engineering Management, 71, 1940–1949.

Mashali A., Elbeltagi E., Motawa I., Elshikh M., (2023), Stakeholder management challenges in mega construction projects: critical success factors, Journal of Engineering, Design and Technology, 21, 358–375.

Mazher K.M., Chan A.P., Choudhry R.M., Zahoor H., Edwards D.J., Ghaithan A.M., Mohammed A., Aziz M., (2022), Identifying measures of effective risk management for public–private partnership infrastructure projects in developing countries, Sustainability, 14, 14149.

McDermot E., Agdas D., Rodríguez Díaz C.R., Rose T., Forcael E., (2022), Improving performance of infrastructure projects in developing countries: an Ecuadorian case study, International Journal of Construction Management, 22, 2469–2483. https://doi.org/10.1080/15623599.2020.1797985

O’Sullivan J.N., (2023), Demographic delusions: World population growth is exceeding most projections and jeopardising scenarios for sustainable futures, World, 4, 545–568.

Ozaki Y., Tanigaki Y., Watanabe S., Nomura M., Onishi M., (2022), Multiobjective tree-structured parzen estimator, Journal of Artificial Intelligence Research, 73, 1209–1250.

Pan Y., Zhang L., (2023), Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions, Archives of Computational Methods in Engineering, 30, 1081–1110. https://doi.org/10.1007/s11831-022-09830-8

Pirgazi J., Kallehbasti M.M.P., Sorkhi A.G., Kermani A., (2024), An efficient hybrid filter-wrapper method based on improved Harris Hawks optimization for feature selection, BioImpacts, 15, 30340–30340.

Pomaza-Ponomarenko A., Kryvova S., Hordieiev A., Hanzyuk A., Halunko O., (2023), Innovative risk management: identification, assessment and management of risks in the context of innovative project management. https://www.indianjournals.com/ijor.aspx?target=ijor:eaj&volume=68&issue=4&article=034

Rezvani S.M., Falcão M.J., Komljenovic D., de Almeida N.M., (2023), A systematic literature review on urban resilience enabled with asset and disaster risk management approaches and GIS-based decision support tools, Applied Sciences, 13, 2223.

Rising J., Tedesco M., Piontek F., Stainforth D.A., (2022), The missing risks of climate change, Nature, 610, 643–651.

Sanni-Anibire M.O., Zin R.M., Olatunji S.O., (2022), Machine learning model for delay risk assessment in tall building projects, International Journal of Construction Management, 22, 2134–2143. https://doi.org/10.1080/15623599.2020.1768326

Sharopova, N. (2023). Enhancing Digital Market Research Through Distributed Data and Knowledge-Based Systems: Analyzing Emerging Trends and Strategies. In International Conference on Next Generation Wired/Wireless Networking (pp. 251-259). Cham: Springer Nature Switzerland.

Shoar S., Chileshe N., Edwards J.D., (2022), Machine learning-aided engineering services’ cost overruns prediction in high-rise residential building projects: Application of random forest regression, Journal of Building Engineering, 50, 104102.

Siahkouhi M., Rashidi M., Mashiri F., Aslani F., Ayubirad M.S., (2024), Application of self-sensing concrete sensors for bridge monitoring- A review of recent developments, challenges, and future prospects, Measurement, 116543.

Wong L.-W., Tan G.W.-H., Ooi K.-B., Lin B., Dwivedi Y.K., (2024), Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis, International Journal of Production Research, 62, 5535–5555. https://doi.org/10.1080/00207543.2022.2063089

Yazdi M., Adumene S., Tamunodukobipi D., Mamudu A., Goleiji E., (2025), Virtual Safety Engineer: From Hazard Identification to Risk Control in the Age of AI, In M. Yazdi (Ed.), Safety-Centric Operations Research: Innovations and Integrative Approaches (Vol. 232, pp. 91–110), Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-82934-5_5

Downloads

Published

28-03-2025

How to Cite

Alhamami , A. H. (2025). Implementation of Machine Learning-Based Risk Prediction Models for Large-Scale Infrastructure Construction Projects in Urban Environments. Cadernos De Educação Tecnologia E Sociedade, 18(1), 330–346. https://doi.org/10.14571/brajets.v18.n1.330-346

Issue

Section

Article