Avaliação de desempenho e análise importância-desempenho de universidades baseada no BSC-AHP em ambiente fuzzy

Autores

  • Sara Talebzadeh Department of Management, Kermanchah Branch, Islamic Azad University, Kermanshah, Iran
  • Elmira Alvandi Behineh Department of Business Administration, University of the Cumberlands, Kentucky, USA. https://orcid.org/0009-0003-7428-3082
  • Marjan Masoomifard Department of Educational Sciences, Payam Noor University (PNU), P.O.Box 19395-4697, Tehran, Iran
  • Munes Taheri Department of Accounting, Faculty of Management and Accounting, Imam Khomeini Memorial Branch, Islamic Azad University, Iran.
  • Shayegan Shakeri Nasab Lead Product Manager, Tailorbird Inc, Princeton, NJ; MBA Candidate, Saint Peter’s University, Jersey City, NJ, MS in Civil Engineering, University of Illinois Urbana-Champaign, USA.

DOI:

https://doi.org/10.14571/brajets.v18.n2.487-503

Palavras-chave:

Educação Superior, Avaliação de Desempenho, Processo de Análise Hierárquica Fuzzy, Cartão de Pontuação Balanceado

Resumo

Cartão de Pontuação Balanceado (BSC), abrangendo as perspectivas Financeira, Cliente, Processos Internos e Aprendizado e Crescimento, é uma abordagem vital para a avaliação do desempenho estratégico em instituições educacionais. No entanto, a pesquisa que aborda incertezas na tomada de decisão nesse contexto permanece escassa. Este estudo busca preencher essa lacuna ao integrar o Processo Analítico Hierárquico Fuzzy (AHP) com o BSC para quantificar efetivamente os pesos de vários critérios e subcritérios relevantes à avaliação de desempenho universitário. Por meio de uma revisão abrangente da literatura e consultas com especialistas, foram identificados indicadores-chave de desempenho específicos para instituições de ensino superior. A pesquisa analisa ainda a relevância relativa desses indicadores nas perspectivas do BSC e avalia a situação atual de desempenho de universidades selecionadas. Além disso, uma análise de importância-desempenho e visualização por meio de gráfico radar são empregadas como ferramentas de inteligência de negócios para ilustrar os pontos fortes e fracos das instituições, destacando oportunidades para possíveis melhorias.

Referências

Agarwal, J., Askarian, S., Bucks, G., & Murphy, T. (2022, August). State of evaluating the effectiveness of teaching development programs for students in engineering. In 2022 ASEE Annual Conference & Exposition.

Al-Filali, I. Y., Abdulaal, R. M., Alawi, S. M., & Makki, A. A. (2024). Modification of strategic planning tools for planning financial sustainability in‎ higher education institutions. Journal of Engineering Research, 12(1), 192-203. DOI: https://doi.org/10.1016/j.jer.2023.11.015

Alharafsheh, M., Harahsheh, A., Lehyeh, S. A., & Alrawashedh, N. (2021). The impact of entrepreneurs characteristics of private jordanian universities leaders on strategic performance: The mediating role of strategic planning. International Journal of Scientific & Technology Research, 10(1), 299-309.

Alipour, N., Nazari-Shirkouhi, S., Sangari, M. S., & Vandchali, H. R. (2022). Lean, agile, resilient, and green human resource management: the impact on organizational innovation and organizational performance. Environmental Science and Pollution Research, 29(55), 82812-82826. DOI: https://doi.org/10.1007/s11356-022-21576-1

Azadeh, A., Nazari-Shirkouhi, S., Hatami-Shirkouhi, L., & Ansarinejad, A. (2011). A unique fuzzy multi-criteria decision making: computer simulation approach for productive operators’ assignment in cellular manufacturing systems with uncertainty and vagueness. The International Journal of Advanced Manufacturing Technology, 56, 329-343. DOI: https://doi.org/10.1007/s00170-011-3186-9

Azadeh, A., Shirkouhi, S. N., & Rezaie, K. (2010). A robust decision-making methodology for evaluation and selection of simulation software package. The International Journal of Advanced Manufacturing Technology, 47, 381-393. DOI: https://doi.org/10.1007/s00170-009-2205-6

Azimi Asmaroud, S. (2022). Preservice Elementary Teachers’ Categorical Reasoning and Knowledge Transfer on Definition Tasks With Two Dimensional Figures. Theses and Dissertations. 1588. https://ir.library.illinoisstate.edu/etd/1588

Banker, R., Datar, S. (1989). Sensitivity, precision and linear aggregation of signals for performance evaluation. Journal of Accounting Research, 27, 21–39. DOI: https://doi.org/10.2307/2491205

Bugrov, V., Sitnicki, M. W., & Serbin, O. (2021). Strategic management of creative industries: A case study of university information institutions. Problems and Perspectives in Management, 19(2), 453. DOI: https://doi.org/10.21511/ppm.19(2).2021.36

Camilleri, M. A. (2021). Using the balanced scorecard as a performance management tool in higher education. Management in Education, 35(1), 10-21. DOI: https://doi.org/10.1177/0892020620921412

Chen, S-H., Wang, H-H., Yang, K-J., (2009) Establishment and application of performance measure indicators for universities. The TQM Magazine, 21(3), 220-235. DOI: https://doi.org/10.1108/17542730910953004

Chinta, R., Kebritchi, M., & Ellias, J. (2016). A conceptual framework for evaluating higher education institutions. International Journal of Educational Management, 30(6), 989-1002. DOI: https://doi.org/10.1108/IJEM-09-2015-0120

Darvishinia, N. (2023). AI in Education: Cracking the Code Through Challenges: A Content Analysis of one of the recent Issues of Educational Technology and Society (ET&S) Journal. Partners Universal International Innovation Journal, 1(4), 61-71.

De Jesus Alvares Mendes Junior, I., & Alves, M. D. C. (2023). The balanced scorecard in the education sector: A literature review. Cogent Education, 10(1), 2160120. DOI: https://doi.org/10.1080/2331186X.2022.2160120

Eason, K., Gaskins, W., Guy, B., Martin, S., & Askarian, S. (2023). We Lose the Game Before We Start to Play: How Black Women Make Meaning of Their Experiences in Engineering Education. Journal of Black Excellence in Engineering, Science, & Technology, 1, 1-21.

Enache, M. J., Spac, C. T., & Capatina, A. (2021). Tracking Key Performance Indicators within Educational Institutions: The Balanced Scorecard Approach. Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied Informatics, 27(1). DOI: https://doi.org/10.35219/eai15840409161

Fathi, S., Bahrami, J., Momeni, S., Seyedrezaei, M., & Javidi Sabbaghian, R. (2025). A Multi-Criteria Framework for Water Resource Management: Combining WEAP and TOPSIS for Optimal Solutions. Advances in Civil Engineering and Environmental Science, 2(1), 79-91. https://doi.org/10.22034/acees.2025.484672.1011

Garrido-Moreno, A., Martín-Rojas, R., & García-Morales, V. J. (2024). The key role of innovation and organizational resilience in improving business performance: A mixed-methods approach. International Journal of Information Management, 77, 102777. DOI: https://doi.org/10.1016/j.ijinfomgt.2024.102777

Izadian, N., Sanaei, F., Sadeghi, S., Khorsand, M. S., & Shakerinasab, N. (2024). Market reactions to capital increases: Insights from asset revaluation in pharmaceutical companies on the stock exchange, World Journal of Advanced Research and Reviews, 23(02), 2486–2497. https://doi.org/10.30574/wjarr.2024.23.2.2487 DOI: https://doi.org/10.30574/wjarr.2024.23.2.2487

Kaplan, R.S. and Norton, D.P. (1996) The balanced scorecard: translating strategy into action, Harvard Business School Press, Boston, MA.

Karizaki, M. S., Gnesdilow, D., Puntambekar, S., & Passonneau, R. J. (2024, July). How Well Can You Articulate that Idea? Insights from Automated Formative Assessment. In International Conference on Artificial Intelligence in Education (pp. 225-233). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64299-9_16 DOI: https://doi.org/10.1007/978-3-031-64299-9_16

Keramati, A., Samadi, H., & Nazari-Shirkouhi, S. (2013). Managing risk in information technology outsourcing: an approach for analysing and prioritising using fuzzy analytical network process. International Journal of Business Information Systems, 12(2), 210-242. DOI: https://doi.org/10.1504/IJBIS.2013.052052

Kiriri, P. N. (2022). Management of performance in higher education institutions: The application of the balanced scorecard (BSC). European Journal of Education, 5(1), 141-154. DOI: https://doi.org/10.26417/158crg70k

Laarhoven, P.I.M., Pedrycz, W. (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems 11, 229-241. DOI: https://doi.org/10.1016/S0165-0114(83)80082-7

Lin, S. W., & Lo, H. W. (2023). An FMEA model for risk assessment of university sustainability: using a combined ITARA with TOPSIS-AL approach based neutrosophic sets. Annals of Operations Research, 1-27. DOI: https://doi.org/10.1007/s10479-023-05250-4

Liou, T. S., & Wang, M. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems, 50(3), 247–255. DOI: https://doi.org/10.1016/0165-0114(92)90223-Q

Makki, A. A., Alqahtani, A. Y., Abdulaal, R. M., & Madbouly, A. I. (2023). A novel strategic approach to evaluating higher education quality standards in University Colleges using multi-criteria decision-making. Education Sciences, 13(6), 577. DOI: https://doi.org/10.3390/educsci13060577

Martilla, J.A., James, J.C. (1977) Importance-performance analysis, Journal of Marketing, 41, 77-79. DOI: https://doi.org/10.1177/002224297704100112

Nasiri, S., Shahabi, S., Shafiesabet, A., Talebbeidokhti, M., & Behineh, E. A. Cybersecurity in Action: Unraveling the Effects of Individual, Social, and Organizational Determinants. Tehnički glasnik, 20(2),1-10, https://doi.org/10.31803/tg-20240627004731

Nazari-Shirkouhi, S., Ansarinejad, A., Miri-Nargesi, S. S., Dalfard, V. M., & Rezaie, K. (2011). Information systems outsourcing decisions under fuzzy group decision making approach. International Journal of Information Technology & Decision Making, 10(06), 989-1022. DOI: https://doi.org/10.1142/S0219622011004683

Nazari-Shirkouhi, S., Miri-Nargesi, S., & Ansarinejad, A. (2017). A fuzzy decision making methodology based on fuzzy AHP and fuzzy TOPSIS with a case study for information systems outsourcing decisions. Journal of Intelligent & Fuzzy Systems, 32(6), 3921-3943. DOI: https://doi.org/10.3233/JIFS-12495

Nazari-Shirkouhi, S., Mousakhani, S., Tavakoli, M., Dalvand, M. R., Šaparauskas, J., & Antuchevičienė, J. (2020). Importance-performance analysis based balanced scorecard for performance evaluation in higher education institutions: an integrated fuzzy approach. Journal of Business Economics and Management, 21(3), 647-678. DOI: https://doi.org/10.3846/jbem.2020.11940

Nazari-Shirkouhi, S., Tavakoli, M., Govindan, K., & Mousakhani, S. (2023). A hybrid approach using Z-number DEA model and Artificial Neural Network for Resilient supplier Selection. Expert Systems with Applications, 222, 119746. DOI: https://doi.org/10.1016/j.eswa.2023.119746

Niven, P.R. (2002) Balanced scorecard step by step, Wiley, New York, NY.

Oliveira, C., Oliveira, A., Fijałkowska, J., & Silva, R. (2021). Implementation of balanced scorecard: Case study of a Portuguese higher education institution. Management: Journal of Contemporary Management Issues, 26(1), 169-188. DOI: https://doi.org/10.30924/mjcmi.26.1.10

Palaniappan, U., Suganthi, L., & Shagirbasha, S. (2021). Building a yardstick–a benchmark framework for assessing higher education management institutions. Benchmarking: An International Journal, 28(8), 2382-2406. DOI: https://doi.org/10.1108/BIJ-07-2020-0383

Petrudi, S. H. H., Ghomi, H., & Mazaheriasad, M. (2022). An Integrated Fuzzy Delphi and Best Worst Method (BWM) for performance measurement in higher education. Decision Analytics Journal, 4, 100121. DOI: https://doi.org/10.1016/j.dajour.2022.100121

Pietrzak, M. (2021). The application of a balanced scorecard in higher education institutions: A case study of wuls. Handbook of operations research and management science in higher education, 419-451. DOI: https://doi.org/10.1007/978-3-030-74051-1_14

Rezaei, P., Rezaie, K., Nazari-Shirkouhi, S., & Tajabadi, M. R. J. (2013). Application of fuzzy multi-criteria decision making analysis for evaluating and selecting the best location for construction of underground dam. Acta Polytechnica Hungarica, 10(7), 187-205. DOI: https://doi.org/10.12700/APH.10.07.2013.7.13

Rezaie, K., Ramiyani, S. S., Nazari-Shirkouhi, S., & Badizadeh, A. (2014). Evaluating performance of Iranian cement firms using an integrated fuzzy AHP–VIKOR method. Applied Mathematical Modelling, 38(21-22), 5033-5046. DOI: https://doi.org/10.1016/j.apm.2014.04.003

Roshdieh, N. (2024). The Effect of Monetary Policy Uncertainty on Stock Market Uncertainty with NARDL Approach. Research Journal of Finance and Accounting, 15(10), 1-9. DOI: https://doi.org/10.2139/ssrn.5110149

Rošulj, D., & Petrović, D. (2020). Performance indicators and the possibility of application of balanced scorecard in higher education institutions. Megatrend revija, 17(1), 109-128. DOI: https://doi.org/10.5937/MegRev2001109R

Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill. DOI: https://doi.org/10.21236/ADA214804

Sadeghi, S., & Niu, C. (2024). Augmenting Human Decision-Making in K-12 Education: The Role of Artificial Intelligence in Assisting the Recruitment and Retention of Teachers of Color for Enhanced Diversity and Inclusivity. Leadership and Policy in Schools, 1-21. DOI: https://doi.org/10.1080/15700763.2024.2358303

Saremi, Y., Aghaei, M., Esfid, M. R., Hasangholipour, T., & Ansari, M. (2024). Providing Digital Marketing Model with Customer Participation Approach with intervening role of knowledge management. International Journal of Knowledge Processing Studies, 4(2), 148-167. https://doi.org/10.22034/kps.2023.410230.1154

Sauri, R. S., Usanto, S., Sucahyo, N., & Sopian, A. (2023). Implementation of The Balanced Scorecard Method in Determining Performance Measures in Higher Education Institutions (Case Study: ITB Swadharma). EduLine: Journal of Education and Learning Innovation, 3(3), 328-338. DOI: https://doi.org/10.35877/454RI.eduline1867

Sharaf-Addin, H. H., & Fazel, H. (2021). Balanced scorecard development as a performance management system in Saudi Public Universities: a case study approach. Asia-Pacific journal of management research and innovation, 17(1-2), 57-70. DOI: https://doi.org/10.1177/2319510X211048591

Tavana, M., Nazari-Shirkouhi, S., & Farzaneh Kholghabad, H. (2021). An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. Health care management science, 24, 768-785. DOI: https://doi.org/10.1007/s10729-021-09550-8

Wu, H-Y., Lin, Y-K., Chang, C-H. (2011) Performance evaluation of extension education centers in universities based on the balanced scorecard. Evaluation and Program Planning 34: 37-50. DOI: https://doi.org/10.1016/j.evalprogplan.2010.06.001

Wu, L., & Li, M. (2024) Application of Balanced Scorecard in Performance Evaluation of Educational Management. Applied Mathematics and Nonlinear Sciences, 9(1). DOI: https://doi.org/10.2478/amns-2024-1118

Wu, Y., Li, C. (2009) Research on performance evaluation of higher education based on the model of BSC-DRF-DEA. In proceedings of 16th International Conference on Industrial Engineering and Engineering Management, Beijing, China, 2009. DOI: https://doi.org/10.1109/ICIEEM.2009.5344267

Yazdi, M. R. T., Mozaffari, M. M., Nazari-Shirkouhi, S., & Asadzadeh, S. M. (2018). Integrated fuzzy DEA-ANFIS to measure the success effect of human resource spirituality. Cybernetics and Systems, 49(3), 151-169. DOI: https://doi.org/10.1080/01969722.2018.1448221

Downloads

Publicado

27-06-2025

Edição

Seção

Artigo

Como Citar

Talebzadeh, S., Alvandi Behineh, E., Masoomifard, M., Taheri, M., & Shakeri Nasab, S. (2025). Avaliação de desempenho e análise importância-desempenho de universidades baseada no BSC-AHP em ambiente fuzzy. Cadernos De Educação, Tecnologia E Sociedade, 18(2), 487-503. https://doi.org/10.14571/brajets.v18.n2.487-503