MODEL OF PARTICLES AND THE CONCEPTUAL REFORMULATION OF THE ATOMIC MODEL THROUGH A TEACHING UNIT RETURNED TO TEACHERS OF SCIENCE
DOI:
https://doi.org/10.14571/brajets.v12.n2.120-126Abstract
. This paper reports the experience of a Didactic Unit (UD) on the Standard Particle Model starting from the limitations of classical physics to explain beta radioactive decay. The work was applied in a bachelor's degree in Nature Sciences: Biology and Chemistry Habilitation (LCN) of the Federal Institute of Rio Grande do Sul, Porto Alegre campus, in the last semester of the course. This work aimed to identify the possibilities and operationalities of a UD to work with topics of Modern Physics among science teachers. The specific objectives were to verify the limitations of classical physics to explain certain types of radiation and the need of modern physics to aid in understanding; to familiarize science teachers with models and concepts of Modern Physics. This is a qualitative research, according to Minayo (1993). The data were collected through the researcher's field diary, questionnaires with open questions, mental maps and works developed by the students (called teachers due to graduation proximity proximity). The data were analyzed through Content Analysis, according to Bardin (2011). From the collected data, we can see evidence that the concept of the current atomic model has been reformulated, according to Eisberg and Resnick (1988), that is, the atom is formed by Leptons, hadrons and force-mediating particles, called bosons. The understanding of the current atomic model and of the forces mediating particles has provided theoretical background and clarity for teachers to explain the radiation of nuclear origin and the operation of equipment that perform diagnostic imaging.References
AVANCINI, S.S.; MARINELLI, J.R. Tópicos de fÃsica nuclear e partÃculas elementares. Florianópolis: UFSC/EAD/CED/CFM, 2009.
BARDIN, L. Análise de Conteúdo. Edições 70, Lisboa, 2011.
CARVALHO, A.M.P.; et al. Ciências no ensino fundamental: O conhecimento fÃsico. São Paulo: Scipione, 2007.
CARVALHO, A. M. P.; VANNUCCHI, A. I., O CurrÃculo de FÃsica: Inovações e Tendências nos Anos Noventa. Investigações em Ensino de Ciências, Porto Alegre, IF-UFRGS, v.1, n.1, abr. 1996.
EISBERG, R.; RESNICK, R. FÃsica Quântica. Trad. Paulo Costa Ribeiro, Enio Frota da Silveira e Marta Feijó Barroso. Rio de Janeiro: campus, 1988.
GOUW, A.M.S.; MOTA, H.S. BIZZO, N. O Jovem Brasileiro e a Ciência: PossÃveis Relações de Interesse. RBPEC v. 16. n. 3. pp. 627–648. dezembro 2016.
KRASILCHIK, M. O professor e o currÃculo das ciências. São Paulo: EPU: Editora da Universidade de São Paulo, 1987.
MINAYO, M.C.S.; SANCHES, O. Quantitativo-Qualitativo: oposição ou complementariedade? Cad. Saúde Públ. Rio de Janeiro, 9(3): 239-262, jul/set, 1993.
QUEIROZ, G.; AZEVEDO, C. A ciência alternativa do senso comum e o treinamento de professores. Cad. Cat. Ens. Fis. Florianópolis, 4(1): 7-16, abr. 1987
RAMOS, L.B.C.; ROSA, P.R.S. O ensino de Ciências: Fatores intrÃnsecos e extrÃnsecos que limitam a realização de atividades experimentais pelo professor dos anos iniciais do Ensino Fundamental. In: Investigação em Ensino de Ciências. V13(3), 2008, p. 299 – 331.
VIECHENESKI, J. P.; CARLETO, M. Por que e para quê ensinar ciências para as crianças. R. Bras. de Ensino de C&T. V.6, n.2, mai-ago 2013. ISSN – 1982873X