Efeito da autoconsciência nas atitudes de e-learning entre estudantes do ensino médio, Hyderabad, Índia

Autores

  • Ridhi Rani Symbiosis Institute of Business Management, Hyderabad; Symbiosis Interantional (Deemed University), Pune, India
  • KDV Prasad Symbiosis Institute of Business Management, Hyderabad; Symbiosis Interantional (Deemed University), Pune, India
  • Ved Srinivas Asistant Professor, Thiagarajar School of Management, Madurai, Tamil Nadu, India

DOI:

https://doi.org/10.14571/brajets.v17.nse2.68-78

Palavras-chave:

Autoconsciência, Atitude de E-Learning, Alunos do Ensino Médio, Adolescência

Resumo

O estudo analisa a relação entre atitudes de E-Learning e autoconsciência entre estudantes do ensino médio que estudam na cidade de Hyderbad, uma metrópole indiana, durante o ano acadêmico de 2022-2023. O estudo teve um total de 578 alunos (305 homens e 273 mulheres). Os participantes receberam o Teste de Atitudes Relacionadas ao E-Learning (TeLRA) e a Escala de Autoconsciência. Os dados foram analisados ​​usando o software SPSS 29.0. A correlação de Pearson e as análises de regressão múltipla foram usadas para determinar o papel preditivo da autoconsciência nas Atitudes de E-Learning. Foi descoberta uma ligação positiva entre "autoconsciência" e "atitude de E-Learning" entre estudantes do ensino médio. Para comparar grupos com base em características demográficas, realizamos testes t de amostra independente e ANOVA unidirecional. As alunas tiveram uma pontuação significativamente maior em atitudes de E-Learning do que os alunos do sexo masculino (t = -4,78; p < 0,05). Alunos com boa formação educacional de sua família tiveram pontuações de atitude de E-Learning significativamente maiores do que aqueles sem (t=3,4; p<0,001). Não houve variações significativas com base na tecnologia usada durante o E-Learning ou outras características demográficas. Alunas pontuaram consideravelmente mais alto em autoconsciência privada (t=-4,96; p<0,001), autoconsciência geral (t=-6,37; p<0,001) e ansiedade social (t=-8,57; p<0,001) do que alunos do sexo masculino. Alunos com histórico educacional familiar exibiram pontuações de autoconsciência geral significativamente maiores (t=2,39; p<0,05) em comparação com aqueles sem experiência em E-Learning. Os resultados foram discutidos e recomendações para estudos científicos adicionais foram feitas.t (t=3,4; p<0,001).

Referências

Barki, H., & Hartwick, J. 1994. Measuring User Participation, User Involvement, and User Attitude. MIS Quarterly, Vol. 18, no. 1, pp. 59-82

Bernard, R., Brauer, A., Abrami, P., & Surkes, M. 2004. “The development of a questionnaire for predicting online learning achievement”. Distance Education, Vol. 25, no. 1, pp. 31-47

Bodur, H. O., Brinberg, D., & Coupey, E. 2000. “Belief, Affect, and Attitude: Alternative Models of the Determinants of Attitude”. Journal of Consumer Psychology, Vol. 9, no. 1, pp. 17 - 28.

Buyukozturk, S.K. (2021). S. K. Buyukozturk icinde, Bilimsel arastirma yontemleri, Ankara: Pengem.

Christie, D., & Viner, R. (2005). Adolescent development. Bmj, 330(7486), 301-304.

Clarke, A. 2008. “E-Learning skills”. 2nd edn. England: Palgrave Macmillan

Cohen, L., Manion, L., & Morrison, K. 2011. “Research Methods in Education”. 7th edn. London: Routledge.

COL (Commonwealth of Learning), 2003. “A Virtual University for Small States of the Commonwealth”. 15th Conference of Commonwealth Education Ministers Edinburgh, October 2003, Edinburgh. Scotland: Commonwealth of Learning

Davis, F. D. 1986. “A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results”. Doctoral dissertation, Sloan School of Management, Massachusetts Institute of Technology. Retrieved online 14/04/2012 at http://dspace.mit.edu/handle/1721.1/15192

Dempsey, M., & Mitchell, A. 2010. “The Influence of Implicit Attitudes on Choice When Consumers Are Confronted with Conflicting Attribute Information”. Journal of Consumer Research, Vol. 37, no. 4, pp. 614-625.

Fenigstein, A., Scheier, M. F., & Buss, A. H. (1975). Public and private self-consciousness: Assessment and theory. Journal of consulting and clinical psychology, 43(4), 522.

Garland, K. J., & Noyes, J. M. 2008. “Computer attitude scales: How relevant today”? Computers in Human Behaviour, Vol. 24, no. 2, pp. 563-575

Garrison, D. R. & Anderson, T. 2003. “E-Learning in the 21st Century: A Framework for Research and Practice”. London: Routledge Falmer

Garrison, D. R. 2011. “E-Learning in the 21st Century”. 2nd edn. London: Routledge Taylor & Francis Group.

Hernandez-Ramos, J. P., Martinez-Abad, F., Penalvo, F. J. G., Garcia, M. E. H., & RodriguezConde, M. J. 2014. “Teachers’ attitude regarding the use of ICT. A factor reliability and validity study”. Computers in Human Behaviour. Vol. 31. Pp. 509-516

Ingram, R. E. (1990). Self-focused attention in clinical disorders: review and a conceptual model. Psychological bulletin, 107(2), 156.

Kisanga, D., & Ireson, G. (2016). Test of E-Learning Related Attitudes (TeLRA) scale: Development, reliability and validity study. International Journal of Education and Development using ICT, 12(1).

Littlejohn, A. and Pegler, C., 2007. “Preparing for Blended E-Learning”. London: Routledge

Matsunaga, M. 2010. “How to Factor-Analyse Your Data Right: Do’s, Don’ts, and How-To’s”. International Journal of Psychological Research, Vol. 3, no. 1, pp. 97-110

Morse, B. J., Gullekson, N. L., Morris, S. A., & Popovich, P. M. 2011. “The development of a general Internet attitudes scale”. Computers in Human Behaviour, Vol. 27, no. 1, pp. 480-489

Nickell, G. S., & Pinto, J. N. 1986. “The computer attitude scale”. Computers in Human Behaviour, Vol. 2, no. 4, pp.301-306

Pynoo, B., Tondeur, J., Van Braak, J., Duyck, W., Sijnave, B., & Duyck, P. 2012. “Teachers’ acceptance and use of an educational portal”. Computers and Education, Vol. 58, no. 4, pp. 1308-1317

Richter, T., Naumann, J., & Groeben, N. 2000. “Attitudes toward the computer: construct validation of an instrument with scales differentiated by content”. Computers in Human Behaviour, Vol. 16, no. 5, pp. 473-491.

Rogers, E. M. 2003. “Diffusion of Innovations”. 5th edn. New York: Simon & Schuster, Inc.

Salmon, G., 2011. “E-Moderating: The key to teaching and learning online” [eBook]. 3rd Ed. London: Routledge. Retrieved online 10/03/2014 at http://lib.myilibrary.com/Open.aspx?id=336371&src=0.

Stein, J. A., Newcomb, M. D., & Bentler, P. M. (1986). The relationship of gender, social conformity, and substance use: A longitudinal study. Bulletin of the Society of Psychologists in Addictive Behaviors, 5(4), 125-138.

Teo, T. 2010b. “Development and validation of the E-Learning Acceptance Measure (ElAM)”. The Internet and Higher Education, Vol. 13, no. 3, pp. 148-152

UNESCO 2009. “Trends in Global Higher Education: Tracking an Academic Revolution”. A Report Prepared for the UNESCO 2009 World Conference on Higher Education. Paris

van Raaij, E, M., & Schepers, J. J. L. 2008. “The acceptance and use of a virtual learning environment in China”. Computers and Education, Vol. 50, no. 3, pp. 838-852.

Weller, M. 2007. “Virtual Learning Environments: Using, choosing and developing your VLE”. London: Routledge Taylor and Francis Group

Wilkinson, A., Roberts, J., & While, A. E. 2010. “Construction of an instrument to measure student information and communication technology skills, experience and attitudes to E-Learning”. Computers in Human Behaviour, Vol. 26, no. 6, pp. 1369-13

Downloads

Publicado

2024-07-24

Edição

Seção

Empoderamento da Comunidade através da Educação, Tecnologia e Infraestrutura