Artificial intimacy: Generation Z behaviors that affect learning in higher education and what do teachers need to know

Authors

DOI:

https://doi.org/10.14571/brajets.v18.n4.1438-1468

Keywords:

Ensino Superior, Aprendizagem Significativa, Inteligência Artificial, Geração Z, Neurociências, Docência

Abstract

This article discusses an emerging challenge for teaching in higher education when dealing with Generation Z students, whose executive neurocontrol networks have been modulated by the intense and prolonged use of connected devices, digital platforms, and social media, creating situations of active Artificial Intimacy. This is an interdisciplinary narrative review that articulates evidence from the neuroscience of learning, studies on technological addiction, and recent data on academic performance in order to understand how these hyperstimulating environments reconfigure reward, attention, memory, motivation, and self-regulation circuits in university students. The synthesis of the literature allows us to characterize six recurring behavioral patterns in classrooms: low tolerance for frustration, isolation in algorithmic “bubbles,” preference for parasocial interactions, continuous search for quick external validation, appreciation of apparent performance, and attention jumps in multitasking. Each pattern is analyzed in light of Ausubel's Meaningful Learning, Goleman's Emotional Intelligence, and Dweck's Growth Mindset, highlighting impacts on conceptual depth, empathy, social skills, perseverance, and willingness to face educational challenges. Based on this integrated reading, the work proposes solutions in the curation of learning paths mediated by generative AI, conceived as neurodidactic strategies to intentionally modulate such patterns in face-to-face and hybrid experiences. By treating Artificial Intimacy as a key to explaining Generation Z behaviors and, simultaneously, as an axis for designing educational interventions with AI, the study inaugurates a conceptual and practical framework in the literature on Higher Education, offering teachers a structured repertoire for reorganizing professional training in contexts permeated by algorithms.

Author Biographies

  • Denise da Vinha Ricieri, Universidade Federal do Paraná

    Professor and course evaluator (Inep/MEC), physiotherapist, and specialist in Active Methodologies and Generative Artificial Intelligence (AI) applied to higher education teaching. She leads faculty development programs in AI and has published articles in national and international journals, as well as the books Conceito 5 no Ensino Superior, Inteligência Artificial nas Metodologias Inovativas, and the e-book series Direto ao prompt. She leads andragogical innovation projects in health-related academic programs and manages the DOCENCIAFLIX platform, a pioneering initiative in lifelong learning for educators.

  • Raphaela Vasconcelos Gomes Barreto, UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO - Ufersa

    Professor at UFERSA, biologist, and leader of the research group AcademIA-GPT para Docentes. Co-author of the book Conceito 5 no Ensino Superior, Inteligência Artificial nas Metodologias Inovativas, and the e-book series Direto ao Prompt. Researcher and author of publications and digital materials on the use of Artificial Intelligence in teaching and learning processes, learning management, assessment, and innovation in Higher Education.

References

Aslam, N., & Akhtar, N. (2020). Impact of multitasking on students’ performance. International Journal of Disaster Recovery and Business Continuity, 11(2), 1511–1528.

Barbosa, R. M. Y. O. (2024). Ausubel e a aprendizagem significativa. Revista Ibero-Americana de Humanidades, Ciências e Educação – REASE, 10(7), 2701. https://doi.org/10.51891/rease.v10i7.14977

Bardach, L., Bostwick, K. C. P., Fütterer, T., Kopatz, M., Hobbi, D. M., Klassen, R. M., & Pietschnig, J. (2024). A meta-analysis on teachers’ growth mindset. Educational Psychology Review, 36(3), 84. https://doi.org/10.1007/s10648-024-09925-7

Calo, M., Judd, B., & Peiris, C. (2024). Grit, resilience and growth‑mindset interventions in health professional students: A systematic review and meta‑analysis. Medical Education, 58(8), 902–919. https://doi.org/10.1111/medu.15391

Chiossi, F., Haliburton, L., Ou, C., Butz, A., & Schmidt, A. (2023). Short-form videos degrade our capacity to retain intentions: Effect of context switching on prospective memory. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23) (pp. 1–14). ACM. https://doi.org/10.1145/3544548.3580778

Chu, M. D., Gerard, P., Pawar, K., Bickham, C., & Lerman, K. (2025, May 20). Illusions of intimacy: Emotional attachment and emerging psychological risks in human‑AI relationships [Preprint]. arXiv. https://arxiv.org/abs/2505.11649v2

De, D., El Jamal, M., Aydemir, E., & Khera, A. (2025). Social media algorithms and teen addiction: Neurophysiological impact and ethical considerations. Cureus, 17(1), e77145. https://doi.org/10.7759/cureus.77145

Divino, S. (2024). Inteligência artificial generativa no ensino superior: Diretrizes para superação dos dilemas didáticos, éticos e legais. Revista Pedagogía Universitaria y Didáctica del Derecho, 11(1), 6–30. https://doi.org/10.5354/0719-5885.2024.74070

Dores, A. R., Peixoto, M., Fernandes, C., Marques, A., & Barbosa, F. (2025). The effects of social feedback through the “like” feature on brain activity: A systematic review. Healthcare, 13(1), 89. https://doi.org/10.3390/healthcare13010089

Döring, N., Le, T. D., Vowels, L. M., Vowels, M. J., & Marcantonio, T. L. (2025). The impact of artificial intelligence on human sexuality: A five-year literature review 2020–2024. Current Sexual Health Reports, 17(4). https://doi.org/10.1007/s11930-024-00397-y

Dubinsky, J. M., & Hamid, A. A. (2024). The neuroscience of active learning and direct instruction. Neuroscience and Biobehavioral Reviews, 163, 105737. https://www.elsevier.com/locate/neubiorev

Dubinsky, J. M., Roehrig, G., & Varma, S. (2022). A place for neuroscience in teacher knowledge and education. Mind, Brain, and Education, 16(3), 228–234. https://doi.org/10.1111/mbe.12334

Gibson, D., Kovanovic, V., Ifenthaler, D., Dexter, S., & Feng, S. (2023). Learning theories for artificial intelligence promoting learning processes. British Journal of Educational Technology, 54, 1125–1146. https://doi.org/10.1111/bjet.13292

Gloria, K. (Rapporteur). (2020). Artificial intimacy: An Aspen Digital Report 2020 (4th Annual Aspen Institute Roundtable on Artificial Intelligence). Aspen Institute.

Gkintoni, E., Antonopoulou, H., Sortwell, A., & Halkiopoulos, C. (2025). Challenging cognitive load theory: The role of educational neuroscience and artificial intelligence in redefining learning efficacy. Brain Sciences, 15(2), 203. https://doi.org/10.3390/brainsci15020203

Jalhed, H., & Edström, M. (Eds.). (2024). 1, 2, 3 Playtime (Reports from Inter Arts Center; No. 1). Lund University, Inter Arts Center. https://www.iac.lu.se/sites/iac.lu.se/files/2025-01/1-2-3-Playtime-report-2024-Inter-Arts-Center.pdf

Lavy, V. (2023). The effect of multitasking on educational outcomes and academic dishonesty (Working Paper No. 31699). National Bureau of Economic Research. http://www.nber.org/papers/w31699

Lieberman, D. Z., & Long, M. E. (2023). Dopamina: A molécula do desejo (1ª ed.). Sextante.

Matias, A. G. C., Nascimento Rocha, S. L., & Taborda Cid Dorotea, N. M. (2025). Convergências educacionais: Neuroaprendizagem e inteligência artificial. SciELO Preprints. https://doi.org/10.1590/SciELOPreprints.12100

Muhmenthaler, M. C., & Meier, B. (2019). Task switching hurts memory encoding. Experimental Psychology, 66(1), 58–67. https://doi.org/10.1027/1618-3169/a000431

Nasser, N. S., Al-Khani, A. M., Alsaad, A. M., Al-Mohaithef, M., & Al-Khudhairy, M. (2020). Cue-reactivity among young adults with problematic Instagram use in response to Instagram-themed risky behavior cues: A pilot fMRI study. Frontiers in Psychology, 11, 556060. https://doi.org/10.3389/fpsyg.2020.556060

Nazaré, M. F. A., & Santos, L. R. S. dos. (2025). Inteligência emocional em Goleman e o comportamento humano no ambiente de trabalho. Aurum Revista Multidisciplinar, 1(2), 135–153. https://doi.org/10.63330/armv1n2-012

Oliveira, Â. M. de, Santos, G. R. dos, Silva, L. L. P. da, & Dimarães, C. C. de S. (2024). O uso da inteligência emocional como uma habilidade para o ambiente de trabalho. Contemporânea: Contemporary Journal, 4(10), 1–11. https://doi.org/10.56083/RCV4N10-122

Oliveira, G. G. de. (2015). A pedagogia da neurociência: Ensinando o cérebro e a mente (1ª ed.). Appris.

Perel, E. (2023). SXSW 2023 Esther Perel Keynote | SXSW [Vídeo]. SXSW. https://youtu.be/vSF-Al45hQU

Pradeep, K., Sulur Anbalagan, R., Thangavelu, A. P., Aswathy, S., Jisha, V. G., & Vaisakhi, V. S. (2024, December 13). Neuroeducation: understanding neural dynamics in learning and teaching. Frontiers in Education, 9, Article 1437418. https://doi.org/10.3389/feduc.2024.1437418

Ricieri, D. da V., Farias, A. M. G. de, Barreto, R. V. G., & Souza, F. R. de. (2024). Erros comuns de docentes sem letramento em inteligência artificial: Uma revisão integrativa para o ensino superior. Peer Review, 6(7). https://doi.org/10.53660/PRW-1986-3703

Ricieri, D. V., & Barreto, R. V. G. (2025). Inteligência artificial nas metodologias inovativas: Estratégias didáticas de sucesso (1ª ed.). Ed. das Autoras.

Sales, A. D. R. (2022). As metodologias ativas no ensino jurídico: Aplicabilidade na inteligência artificial. Revista de Argumentação e Hermenêutica Jurídica, 8(1), 34–56. https://doi.org/10.26668/IndexLawJournals/2526-0103/2022.v8i1.8937

Silva, R. S. da. (2024). Retórica, lógica informal e o estudo da argumentação. In M. I. R. C. Correia (Org.), Média e indisciplina: Contribuições para uma política das mediações (pp. 159–176). Edições Húmus.

Twenge, J. M., & Campbell, W. K. (2018). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive Medicine Reports, 12, 271–283. https://doi.org/10.1016/j.pmedr.2018.10.003

Wadsley, M., & Ihssen, N. (2023). A systematic review of structural and functional MRI studies investigating social networking site use. Brain Sciences, 13(5), 787. https://doi.org/10.3390/brainsci13050787

World Economic Forum. (2025). The Future of Jobs Report 2025. World Economic Forum. https://www.weforum.org/publications/the-future-of-jobs-report-2025/

Yong, J. C., & Kanazawa, S. (2025). Why evolutionary mismatches are ubiquitous while evolutionary matches are rare when humans use technology. Evolutionary Behavioral Sciences. Advance online publication. https://doi.org/10.1037/ebs0000383

Published

28-12-2025

Issue

Section

Article

How to Cite

da Vinha Ricieri, D., & Vasconcelos Gomes Barreto, R. (2025). Artificial intimacy: Generation Z behaviors that affect learning in higher education and what do teachers need to know. Cadernos De Educação Tecnologia E Sociedade, 18(4), 1438-1468. https://doi.org/10.14571/brajets.v18.n4.1438-1468