TEOREMA DE PITÁGORAS E O FRACTAL ÁRVORE PITAGÓRICA: UM EXPERIMENTO NO ENSINO FUNDAMENTAL
DOI:
https://doi.org/10.14571/brajets.v11.n3.444-457Resumo
Este artigo aborda uma pesquisa qualitativa, o qual teve por objetivo utilizar noções de geometria euclidiana de alunos de um nono ano do Ensino Fundamental, para perceberem a necessidade de reconhecerem alguns aspectos de geometria fractal, a fim de melhor compreenderem o mundo em que vivem. Como metodologia de ensino, foi empregada a Teoria de Van Hiele para o desenvolvimento do raciocÃnio em geometria, juntamente com o software Geogebra na construção do fractal Árvore Pitagórica. Os alunos realizaram atividades de classificação de figuras geométricas e de elementos da natureza, as quais permitiram agrupá-los por propriedades ou caracterÃsticas em duas geometrias e, com exploração do recurso da fotografia, foi possÃvel, por exemplo, identificar a caracterÃstica de autossemelhança dos objetos fractais. Os resultados da pesquisa mostraram a eficiência, tanto da Teoria de Van Hiele, quanto do Geogebra na compreensão de propriedades das duas geometrias, em particular, sobre o teorema de Pitágoras.Referências
BRUNET, A. R. G.; LEIVAS, J. C. P.; LEYSER, M. Semelhança de triângulos: o desafio de (re)construir práticas em sala de aula. In: Educação Matemática em Revista/ Sociedade Brasileira de Educação Matemática do Rio Grande do Sul (SBEM-RS). v.1, n.1(1999). Canoas: Ed. ULBRA, 2007.
JANOS, M.. Geometria Fractal. Rio de Janeiro: Editora Ciência Moderna Ltda., 2008.
JELINEK, K. R.; KAMPFF, A.J.C. A geometria que existe além do olhar: levando a geometria da natureza para dentro da escola. Educação matemática em revista/ Sociedade Brasileira de Educação Matemática do Rio Grande do Sul (SBEM-RS). v.1, n.10 (2009) – Canoas: Ed. ULBRA, 2009.
NASSER, L.; SANT’ANNA, N. P. Geometria segundo a Teoria de Van Hiele. Rio de Janeiro: Projeto Fundão, IM/UFRJ, 1998.
NASSER, L., et al. Geometria segundo a Teoria de Van Hiele – 3. ed. Instituto de Matemática/ UFRJ - Projeto fundão, 2000.
PADILHA, T. APARECIDA F. Conhecimentos Geométricos e Algébricos a partir da construção de fractais com uso do software GeoGebra. Dissertação de Mestrado. Lajeado/RS. UNIVATES, 2012.
TOMEI, C. Euclides - A conquista do espaço. São Paulo: Odysseus Editora, 2003.
VILLIERS, M. de. Algumas reflexões sobre a Teoria de Van Hiele. In: Educ. Matem. Pesq., São Paulo, v.12, n.3, pp.400-431, 2010. DisponÃvel em: . Acesso em: 21 set. 2016.