Conhecimento especializado do professor de matemática na utilização de exemplos
Estudo sobre a natureza das soluções da equação quadrática
DOI:
https://doi.org/10.14571/brajets.v17.n3.1171-1183Palavras-chave:
mathematics teacher´s specialized knowledge, quadratic equation, math teachers, qualitative, Case StudyResumo
O conhecimento do professor de Matemática é um campo que há décadas desperta interesse em pesquisas, tanto na sua dimensão disciplinar quanto na didática. A base seminal, na especificidade do conhecimento para o ensino, tem origem nos trabalhos de Lee Shulman, que cunhou e problematizou o conhecimento didático do conteúdo, como necessário ao professor para ministrar a disciplina. Suas contribuições fundamentam modelos atuais mais específicos, nos quais o uso de exemplos e analogias desempenham um papel relevante na aprendizagem dos alunos. Neste trabalho nos apoiamos no Modelo de Conhecimento Especializado do Professor de Matemática (MTSK) para caracterizar o conhecimento de um professor de Matemática na utilização de exemplos para o ensino sobre a natureza das soluções de equações quadráticas (discriminantes). A partir de um paradigma interpretativo pretendemos compreender, em profundidade, qual é o conhecimento especializado expresso por um professor de Matemática, através do estudo de um caso instrumental com análise baseada em observações de sala de aula. Alguns resultados mostram que no conhecimento matemático (MK) manifestado predomina o conhecimento dos tópicos (procedimentos KoT), bem como são identificados alguns indícios de conhecimento sobre a estrutura matemática (KSM). Em relação ao conhecimento do conteúdo didático (PCK), o conhecimento fica evidente nos subdomínios: características de aprendizagem (KFLM), ensino (KMT) e sequenciamento (KMLS). Tanto o conhecimento matemático como o didático estão relacionados a partir do tipo de exemplos selecionados no ensino da natureza das soluções da equação quadrática.Referências
Adler, J., & Pournara, C. (2020). Exemplifying with variation and its development in mathematics teacher education. En D. Potari & O. Chapman (Eds.), International handbook of mathematics teacher education: volume 1. Knowledge, beliefs, and identity in mathematics teaching and teaching development (pp. 329–353). Sense.
Bardín, L. (1996). El análisis de contenido. Akal Ediciones.
Carrillo-Yañez, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M. & Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialized knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. doi:10.1080/14794802.2018.1479981
Cooper, D. C., y Schindler, P. S. (2001). Business Research Methods (seventh edition). New York: McGraw-Hill.
Figueiredo, C. (2010). Los ejemplos en clase de matemáticas de secundaria como referente del conocimiento profesional (Tesis Doctoral). Universidad de Extremadura, España.
Figueiredo, C.A., Contreras, L.C. & Blanco, L.J. (2012). La ejemplificación del concepto de función: diferencias entre profesores noveles y profesores expertos. Educación Matemática, 24 (1), 73-105.
Figueiredo, C. A. & Contreras, L. C. (2013). La función cuadrática: variación, transparencia y dos tipos de ejemplos. Avances de Investigación en Educación Matemática, 3, 45-68.
Huckstep, P., Rowland, T. & Thwaites, A. (2002). “Primary Teachers’ Mathematics Content Knowledge: What does it look like in the Clasrroom?”. Proceedings of BERA Conference. Exeter. http://education.pwv.gov.za/content/documents/
Liñan, M. M., Contreras, L.C. & Barrera, V. (2016). Conocimiento de los Temas (KoT). En J. Carrillo, L.C. Contreras & M. Montes (Eds.), Reflexionando sobre el conocimiento del profesor. Actas de las II Jornadas del Seminario de Investigación de Didáctica de la Matemática de la Universidad de Huelva (pp. 12 -20). SGSE.
Loughran, J., Mulhall, P., & Berry, A. (2008). Exploring pedagogical content knowledge in science teacher education. International Journal of Science Education, 30(10), 1301–1320. doi: 10.1080/09500690802187009
MINEDUC. (2015). Bases curriculares de 7° básico a 2° medio. Ministerio de educación, Unidad de curriculum y evaluación.
Muir, T. (2007). Setting a good example: Teacher’s choice of examples and their contribution to effective teaching of numeracy. En J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice (Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia, Hobart, pp. 513–522). Adelaide, SA: MERGA.
Rodríguez, D. y Valldeoriola, J. (2007). Metodología de la investigación. Universitat Oberta de Catalunya, España. Recuperado de http://zanadoria.com/syllabi/m1019
Rowland, T., Turner, F., Thwaites, A. & Huckstep, P. (2009). Transformation: Using examples in mathematics teaching. En T. Rowland, F. Turner, A. Thwaites, & P. Huckstep (Eds), Developing Primary Mathematics Teaching: Reflecting on Practice with the Knowledge Quartet (pp. 67-100). London: Sage.
Sánchez-Acevedo, N., Sosa, L., & Contreras, L. C. (2024). Conocimiento especializado del profesor de Matemáticas evidenciado en la selección y uso de ejemplos en la enseñanza de la ecuación cuadrática. Bolema, 38, 1-34. https://doi.org/10.1590/1980-4415v38a220140
Sánchez-Acevedo, N., Sosa, L. & Contreras, L. C. (2023). Posibles relaciones entre el conocimiento especializado del profesor de matemáticas con la ejemplificación. En R. Delgado-Rebolledo y D. Zakaryan (Eds.), Actas del VI Congreso Iberoamericano sobre Conocimiento Especializado del Profesor de Matemáticas (pp. 256-263). Pontificia Universidad Católica de Valparaíso.
Shulman, L.S. (1986). Those who understand: knowledge growth in teaching. American Educational Research Association, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
Shulman, L.S. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1-22. http://dx.doi.org/10.17763/haer.57.1.j463w79r56455411
Stake, R. E. (2008). Qualitative Case Studies. En N. Denzin & Y. Lincoln (Eds.), Strategies of Qualitative Inquiry (pp. 119-149). Thousand Oaks, CA: Sage Publications.
Stewart, J., Redlin, L., y Watson, S. (2010). Precálculo. Thomson.
Vaiyavutjamai, P. & Clements, M. A. (2006). Effects of classroom instruction on students’ understanding of quadratic equations. Mathematics Education Research Journal, 18(1), 47-77. https://doi.org/10.1007/BF03217429
Watson, A., y Mason, J. H. (2002). Extending example spaces as a learning/teaching strategy in mathematics. En A. Cockburn & E. Nardi (Eds.), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 377). PME.
Yin, R. (2003). Case study research. Design and methods. Sage Publications.
Zakaryan, D., Estrella, S., Espinoza-Vásquez, G., Morales, S., Olfos, R., FloresMedrano, E., & Carrillo, J. (2018). Relaciones entre el conocimiento de la enseñanza y el conocimiento de las características del aprendizaje de las matemáticas: caso de una profesora de secundaria. Enseñanza de las Ciencias, 36(2), 105–123. https://doi.org/10.5565/rev/ensciencias.2260
Zaslavsky, O. (2019). There is more to examples than meets the eye: Thinking with and through mathematical examples in different settings. The Journal of Mathematical Behavior, 53, 245-255. https://doi.org/10.1016/j.jmathb.2017.10.001
Zodik, I., & Zaslavsky, O. (2007). Exemplification in the mathematics classroom: what is it like and what does it imply? En D. Pitta, & G. Philippou (Eds.), Proceeding of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 2024–2033). ERME. http://erme.site/wpcontent/uploads/CERME5/WG12.pdf
Zodik, I., y Zaslavsky, O. (2008). Characteristics of teachers' choice of examples in and for the mathematics classroom. Educational Studies in Mathematics, 69, 165–182. https://doi.org/10.1007/s10649-008-9140-6
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2024 Nicolás Sánchez Acevedo, Carlos Segura, Luis Carlos Contreras , Leticia Sosa Guerrero
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
The BRAJETS follows the policy for Open Access Journals, provides immediate and free access to its content, following the principle that making scientific knowledge freely available to the public supports a greater global exchange of knowledge and provides more international democratization of knowledge. Therefore, no fees apply, whether for submission, evaluation, publication, viewing or downloading of articles. In this sense, the authors who publish in this journal agree with the following terms: A) The authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY), allowing the sharing of the work with recognition of the authorship of the work and initial publication in this journal. B) Authors are authorized to distribute non-exclusively the version of the work published in this journal (eg, publish in the institutional and non-institutional repository, as well as a book chapter), with acknowledgment of authorship and initial publication in this journal. C) Authors are encouraged to publish and distribute their work online (eg, online repositories or on their personal page), as well as to increase the impact and citation of the published work.