As Tecnologias Digitais no Processo de Ensino das Disciplinas STEM:
Desafios e Perspectivas
DOI:
https://doi.org/10.14571/brajets.v17.n1.445-458Resumo
A integração moderna das tecnologias digitais no processo educativo requer um estudo adicional, dadas as oportunidades que este processo abre. O objetivo do artigo é estudar a utilização das tecnologias digitais na educação STEM através do prisma da investigação dos principais desafios e perspectivas. Para atingir este objetivo, foram utilizados os métodos de questionários e entrevistas. Em particular, foram entrevistados 65 professores de instituições de ensino superior, cujas opiniões se tornaram a base para formar uma imagem generalizada do estudo. Os resultados mostram que os professores modernos utilizam ativamente as tecnologias digitais no ensino STEM. O nível médio de utilização de tecnologias digitais entre os professores de STEM é elevado: 43 pessoas (65%) utilizam tecnologias nos níveis 4 e 5. No entanto, esta utilização intensiva das tecnologias digitais no ensino STEM suscita desafios e oportunidades. Em particular, os professores de hoje enfrentam frequentemente um acesso limitado à infraestrutura técnica necessária, o que pode limitar a sua capacidade de implementar ferramentas digitais. A má qualidade da ligação à Internet pode afetar a fluidez e a eficiência da utilização dos recursos em linha. A insuficiente formação dos professores na utilização das tecnologias digitais é também um desafio significativo. O aumento da disponibilidade de recursos digitais para os professores tornará a aprendizagem mais acessível e diversificada. A cooperação entre universidades e empresas tecnológicas também abre novas oportunidades para o desenvolvimento da educação STEM. As conclusões sublinham que esta interação facilita o intercâmbio de experiências, o acesso a tecnologias e recursos avançados e cria condições para a execução de projectos e programas conjuntos.Referências
Adegoke, O. T., Akinrinola, F. Y., & Ogegbo, A. A. (2023). ICT integration in STEM education in Rwanda. In O. T. Adegoke, F. Y. Akinrinola, & A. A. Ogegbo (Eds.), Information and Communications Technology in STEM Education (pp. 68-81). London: Routledge. https://doi.org/10.4324/9781003279310-5
Ataeva, N. (2022). Teaching natural sciences through the prism of philosophy: An attempt to define the relationship. Futurity Philosophy, 1(4), 15–28. https://doi.org/10.57125/FP.2022.12.30.02
Bakhmat, N., Kruty, K., Tolchieva, H., & Pushkarova, T. (2022). Modernization of future teachers’ professional training: On the role of immersive technologies. Futurity Education, 2(1), 32–41. https://doi.org/10.57125/FED/2022.10.11.22
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: National Science Teachers Association.
Chabalengula, V. M., & Banda, A. (2023). ICT integration in Zambian high school STEM education. In V. M. Chabalengula & A. Banda (Eds.), Information and Communications Technology in STEM Education (pp. 14-30). London: Routledge. https://doi.org/10.4324/9781003279310-2
Chesky, N. Z., & Wolfmeyer, M. R. (2015). STEM’s what, why, and how? Ontology, axiology, and epistemology. In N. Z. Chesky & M. R. Wolfmeyer (Eds.), Philosophy of STEM Education (pp. 17-43). New York: Palgrave Macmillan US. https://doi.org/10.1057/9781137535467_2
Deyoe, M. M., Newman, D. L., & Lamendola, J. M. (2015). Mobile technology in higher education. In M. M. Deyoe, D. L. Newman, & J. M. Lamendola (Eds.), STEM Education (pp. 481-505). IGI Global. https://doi.org/10.4018/978-1-4666-7363-2.ch026
Enguta Mwenzi, J., & Andia Moyamani, E. (2023). Social networks addictions and academic performance of students at the University of Kinshasa. Futurity Education, 3(2), 213–226. https://doi.org/10.57125/FED.2023.06.25.13
Hasan, M., Khan, M. S. H., & Ahmed, A. K. M. F. (2024). Application of variation theory in STEM education: A comprehensive guideline for STEM teachers. MethodsX, 12, 102500. https://doi.org/10.1016/j.mex.2023.102500
Henry, M., Méango, R., & Mourifié, I. (2024). Role models and revealed gender-specific costs of STEM in an extended Roy model of major choice. Journal of Econometrics, 238(2), 105571. https://doi.org/10.1016/j.jeconom.2023.105571
Hsu, Y.-S., & Fang, S.-C. (2019). Opportunities and challenges of STEM education. In Y.-S. Hsu & S.-C. Fang (Eds.), Asia-Pacific STEM Teaching Practices (pp. 1-16). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0768-7_1
Huffman, D., Thomas, K., & Basham, J. D. (2020). The transdisciplinary nature of STEAM education. In D. Huffman, K. Thomas, & J. D. Basham (Eds.), Challenges and Opportunities for Transforming From STEM to STEAM Education (pp. 221-237). IGI Global. https://doi.org/10.4018/978-1-7998-2517-3.ch009
Jamali, S. M., Ale Ebrahim, N., & Jamali, F. (2022). The role of STEM education in improving the quality of education: A bibliometric study. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-022-09762-1
Kennedy, T. J., & Odell, M. R. L. (2023). STEM education as a meta-discipline. In T. J. Kennedy & M. R. L. Odell (Eds.), Contemporary Issues in Science and Technology Education (pp. 37-51). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24259-5_4
Kharitonenko, L. (2022). Innovations and traditions in Ukrainian language teaching at the educational establishments of Ukraine: Cases, models of the future. Futurity Education, 2(1), 64–81. https://doi.org/10.57125/FED.2022.25.03.7
Krymets, L. (2022). What must the education of the future be like to be really future? (Attempts of philosophical reflection). Futurity Philosophy, 1(4), 28–41. https://doi.org/10.57125/FP.2022.12.30.03
Moosa, S., Ncube, R., & Ramnarain, U. (2023). Translating policy to practice. In S. Moosa, R. Ncube, & U. Ramnarain (Eds.), Information and Communications Technology in STEM Education (pp. 1-13). London: Routledge. https://doi.org/10.4324/9781003279310-1
Myronenko, S., Dzhym, V., Prots, T., Kubatko, A., & Saienko, V. (2022). Formation and activation of a healthy lifestyle through sports. AD ALTA: Journal of Interdisciplinary Research, 12(02-XXXI), 36-40. Retrieved from https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-2243624
Peni, N. R. N., & Dewi, D. A. K. (2023). Development research framework for designing functions class using Desmos. Futurity Education, 3(4), 73–94. https://doi.org/10.57125/FED.2023.12.25.05
Pérez Torres, M., Couso Lagarón, D., & Marquez Bargalló, C. (2023). Evaluation of STEAM project-based learning (STEAM PBL) instructional designs from the STEM practices perspective. Education Sciences, 14(1), 53. https://doi.org/10.3390/educsci14010053
Pranata, R., Syahril, & Megahati S., R. R. P. (2023). STEM education in science learning: Systematic literature review. Jurnal Penelitian Pendidikan IPA, 9(8), 424-431. https://doi.org/10.29303/jppipa.v9i8.4655
Pratama, R. A., Saputra, M. A., & Hikmawaty, L. (2024). Enhancing historical consciousness in history education through integrating STEM approach and historical thinking skill. Journal of Education and Learning (EduLearn), 18(1), 236-243. https://doi.org/10.11591/edulearn.v18i1.20890
Salnyk, I., Grin, L., Yefimov, D., & Beztsinna, Z. (2023). The future of higher education: Implementation of virtual and augmented reality in the educational process. Futurity Education, 3(3), 46–61. https://doi.org/10.57125/FED.2023.09.25.03
Sidorova, I., Smolina, O., Khomiakova, O., Andriichuk, P., & Romaniuk, L. (2022). Introduction of the latest teaching practices and development of the educational process in the field of culture and art: The experience of EU countries. Revista de Tecnología de Información y Comunicación en Educación, 16(2), 70-81. https://doi.org/10.46502/issn.1856-7576/2022.16.02.4
Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. https://doi.org/10.5703/1288284314653
Tkachenko, L., Kushevskaya, N., Kabysh, M. (2023). Evaluating future teacher competencies in the face of contemporary global challenges: A comprehensive analysis. Futurity Education, 3(2), 105–118. https://doi.org/10.57125/FED.2023.06.25.06
Tsekhmister, Y., Chalyi, A., & Chalyy, K. (2009). Teaching and learning of medical physics and biomedical engineering in Ukrainian medical universities. In Y. Tsekhmister, A. Chalyi, & K. Chalyy (Eds.), IFMBE Proceedings (pp. 383-384). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03893-8_110
Tsekhmister, Y., Konovalova, T., & Tsekhmister, B. (2022). Quality control of educational process in the lyceum of medical profile when learning in distance mode during the COVID-19 pandemic. Amazonia Investiga, 11(57), 121-132. https://doi.org/10.34069/AI/2022.57.09.13
Tsekhmister, Y., Kotyk, T., Matviienko, Y., Rudenko, Y., & Ilchuk, V. (2021). The effectiveness of augmented reality technology in STEAM education. Apuntes Universitarios, 12(1), 250–267. https://doi.org/10.17162/au.v11i5.932
Vandeyar, T. (2013). Practice as policy in ICT for education: Catalysing communities of practice in education in South Africa. Technology in Society, 35(4), 248-257. https://doi.org/10.1016/j.techsoc.2013.10.002
Yuskovych-Zhukovska, V., Bogut, O., Lotyuk, Y., Kravchuck, O., Rudenko, O., & VasylEnko, H. (2022). E-Learning in a postmodern society. Postmodern Openings, 13(1 Sup1), 447-464. https://doi.org/10.18662/po/13.1Sup1/435
Zander, L., & Ertl, B. (2023). Female students' belonging uncertainty in higher education STEM environments. In L. Zander & B. Ertl (Eds.), The Routledge International Handbook of Gender Beliefs, Stereotype Threat, and Teacher Expectations (pp. 67-78). London: Routledge. https://doi.org/10.4324/9781003275763-8
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Halyna Hubal, Andrii Siasiev, Volodymyr Sipii, Iryna Syrmamiikh, Serhii Burtovyi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License. A revista segue a política para Periódicos de Acesso Livre, oferecendo acesso livre, imediato e gratuito ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona mais democratização internacional do conhecimento. Por isso, não se aplica taxas, sejam elas para submissão, avaliação, publicação, visualização ou downloads dos artigos. Além disso, a revista segue a licença Creative Common (CC BY) permitindo qualquer divulgação do artigo, desde que sejam referenciados o artigo original. Neste sentido, os autores que publicam nesta revista concordam com os seguintes termos: A) Os autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License (CC BY), permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista. B) Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional e não institucional, bem como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. C) Autores sãoo estimulados a publicar e distribuir seu trabalho online (ex.: repositórios online ou na sua página pessoal), bem como aumentar o impacto e a citação do trabalho publicado.