As Tecnologias Digitais no Processo de Ensino das Disciplinas STEM:

Desafios e Perspectivas

Autores

  • Halyna Hubal Lutsk National Technical University
  • Andrii Siasiev Oles Honchar Dnipro National University Ukraine
  • Volodymyr Sipii National Academy of Educational Sciences of Ukraine
  • Iryna Syrmamiikh Donetsk State University of Internal Affairs
  • Serhii Burtovyi Communal institution “Kirovohrad Regional In-Service Teacher Training Institute named after Vasyl Sukhomlynskyi”,

DOI:

https://doi.org/10.14571/brajets.v17.n1.445-458

Resumo

A integração moderna das tecnologias digitais no processo educativo requer um estudo adicional, dadas as oportunidades que este processo abre. O objetivo do artigo é estudar a utilização das tecnologias digitais na educação STEM através do prisma da investigação dos principais desafios e perspectivas. Para atingir este objetivo, foram utilizados os métodos de questionários e entrevistas. Em particular, foram entrevistados 65 professores de instituições de ensino superior, cujas opiniões se tornaram a base para formar uma imagem generalizada do estudo. Os resultados mostram que os professores modernos utilizam ativamente as tecnologias digitais no ensino STEM. O nível médio de utilização de tecnologias digitais entre os professores de STEM é elevado: 43 pessoas (65%) utilizam tecnologias nos níveis 4 e 5. No entanto, esta utilização intensiva das tecnologias digitais no ensino STEM suscita desafios e oportunidades. Em particular, os professores de hoje enfrentam frequentemente um acesso limitado à infraestrutura técnica necessária, o que pode limitar a sua capacidade de implementar ferramentas digitais. A má qualidade da ligação à Internet pode afetar a fluidez e a eficiência da utilização dos recursos em linha. A insuficiente formação dos professores na utilização das tecnologias digitais é também um desafio significativo. O aumento da disponibilidade de recursos digitais para os professores tornará a aprendizagem mais acessível e diversificada. A cooperação entre universidades e empresas tecnológicas também abre novas oportunidades para o desenvolvimento da educação STEM. As conclusões sublinham que esta interação facilita o intercâmbio de experiências, o acesso a tecnologias e recursos avançados e cria condições para a execução de projectos e programas conjuntos.

Referências

Adegoke, O. T., Akinrinola, F. Y., & Ogegbo, A. A. (2023). ICT integration in STEM education in Rwanda. In O. T. Adegoke, F. Y. Akinrinola, & A. A. Ogegbo (Eds.), Information and Communications Technology in STEM Education (pp. 68-81). London: Routledge. https://doi.org/10.4324/9781003279310-5

Ataeva, N. (2022). Teaching natural sciences through the prism of philosophy: An attempt to define the relationship. Futurity Philosophy, 1(4), 15–28. https://doi.org/10.57125/FP.2022.12.30.02

Bakhmat, N., Kruty, K., Tolchieva, H., & Pushkarova, T. (2022). Modernization of future teachers’ professional training: On the role of immersive technologies. Futurity Education, 2(1), 32–41. https://doi.org/10.57125/FED/2022.10.11.22

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: National Science Teachers Association.

Chabalengula, V. M., & Banda, A. (2023). ICT integration in Zambian high school STEM education. In V. M. Chabalengula & A. Banda (Eds.), Information and Communications Technology in STEM Education (pp. 14-30). London: Routledge. https://doi.org/10.4324/9781003279310-2

Chesky, N. Z., & Wolfmeyer, M. R. (2015). STEM’s what, why, and how? Ontology, axiology, and epistemology. In N. Z. Chesky & M. R. Wolfmeyer (Eds.), Philosophy of STEM Education (pp. 17-43). New York: Palgrave Macmillan US. https://doi.org/10.1057/9781137535467_2

Deyoe, M. M., Newman, D. L., & Lamendola, J. M. (2015). Mobile technology in higher education. In M. M. Deyoe, D. L. Newman, & J. M. Lamendola (Eds.), STEM Education (pp. 481-505). IGI Global. https://doi.org/10.4018/978-1-4666-7363-2.ch026

Enguta Mwenzi, J., & Andia Moyamani, E. (2023). Social networks addictions and academic performance of students at the University of Kinshasa. Futurity Education, 3(2), 213–226. https://doi.org/10.57125/FED.2023.06.25.13

Hasan, M., Khan, M. S. H., & Ahmed, A. K. M. F. (2024). Application of variation theory in STEM education: A comprehensive guideline for STEM teachers. MethodsX, 12, 102500. https://doi.org/10.1016/j.mex.2023.102500

Henry, M., Méango, R., & Mourifié, I. (2024). Role models and revealed gender-specific costs of STEM in an extended Roy model of major choice. Journal of Econometrics, 238(2), 105571. https://doi.org/10.1016/j.jeconom.2023.105571

Hsu, Y.-S., & Fang, S.-C. (2019). Opportunities and challenges of STEM education. In Y.-S. Hsu & S.-C. Fang (Eds.), Asia-Pacific STEM Teaching Practices (pp. 1-16). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0768-7_1

Huffman, D., Thomas, K., & Basham, J. D. (2020). The transdisciplinary nature of STEAM education. In D. Huffman, K. Thomas, & J. D. Basham (Eds.), Challenges and Opportunities for Transforming From STEM to STEAM Education (pp. 221-237). IGI Global. https://doi.org/10.4018/978-1-7998-2517-3.ch009

Jamali, S. M., Ale Ebrahim, N., & Jamali, F. (2022). The role of STEM education in improving the quality of education: A bibliometric study. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-022-09762-1

Kennedy, T. J., & Odell, M. R. L. (2023). STEM education as a meta-discipline. In T. J. Kennedy & M. R. L. Odell (Eds.), Contemporary Issues in Science and Technology Education (pp. 37-51). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24259-5_4

Kharitonenko, L. (2022). Innovations and traditions in Ukrainian language teaching at the educational establishments of Ukraine: Cases, models of the future. Futurity Education, 2(1), 64–81. https://doi.org/10.57125/FED.2022.25.03.7

Krymets, L. (2022). What must the education of the future be like to be really future? (Attempts of philosophical reflection). Futurity Philosophy, 1(4), 28–41. https://doi.org/10.57125/FP.2022.12.30.03

Moosa, S., Ncube, R., & Ramnarain, U. (2023). Translating policy to practice. In S. Moosa, R. Ncube, & U. Ramnarain (Eds.), Information and Communications Technology in STEM Education (pp. 1-13). London: Routledge. https://doi.org/10.4324/9781003279310-1

Myronenko, S., Dzhym, V., Prots, T., Kubatko, A., & Saienko, V. (2022). Formation and activation of a healthy lifestyle through sports. AD ALTA: Journal of Interdisciplinary Research, 12(02-XXXI), 36-40. Retrieved from https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-2243624

Peni, N. R. N., & Dewi, D. A. K. (2023). Development research framework for designing functions class using Desmos. Futurity Education, 3(4), 73–94. https://doi.org/10.57125/FED.2023.12.25.05

Pérez Torres, M., Couso Lagarón, D., & Marquez Bargalló, C. (2023). Evaluation of STEAM project-based learning (STEAM PBL) instructional designs from the STEM practices perspective. Education Sciences, 14(1), 53. https://doi.org/10.3390/educsci14010053

Pranata, R., Syahril, & Megahati S., R. R. P. (2023). STEM education in science learning: Systematic literature review. Jurnal Penelitian Pendidikan IPA, 9(8), 424-431. https://doi.org/10.29303/jppipa.v9i8.4655

Pratama, R. A., Saputra, M. A., & Hikmawaty, L. (2024). Enhancing historical consciousness in history education through integrating STEM approach and historical thinking skill. Journal of Education and Learning (EduLearn), 18(1), 236-243. https://doi.org/10.11591/edulearn.v18i1.20890

Salnyk, I., Grin, L., Yefimov, D., & Beztsinna, Z. (2023). The future of higher education: Implementation of virtual and augmented reality in the educational process. Futurity Education, 3(3), 46–61. https://doi.org/10.57125/FED.2023.09.25.03

Sidorova, I., Smolina, O., Khomiakova, O., Andriichuk, P., & Romaniuk, L. (2022). Introduction of the latest teaching practices and development of the educational process in the field of culture and art: The experience of EU countries. Revista de Tecnología de Información y Comunicación en Educación, 16(2), 70-81. https://doi.org/10.46502/issn.1856-7576/2022.16.02.4

Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. https://doi.org/10.5703/1288284314653

Tkachenko, L., Kushevskaya, N., Kabysh, M. (2023). Evaluating future teacher competencies in the face of contemporary global challenges: A comprehensive analysis. Futurity Education, 3(2), 105–118. https://doi.org/10.57125/FED.2023.06.25.06

Tsekhmister, Y., Chalyi, A., & Chalyy, K. (2009). Teaching and learning of medical physics and biomedical engineering in Ukrainian medical universities. In Y. Tsekhmister, A. Chalyi, & K. Chalyy (Eds.), IFMBE Proceedings (pp. 383-384). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-03893-8_110

Tsekhmister, Y., Konovalova, T., & Tsekhmister, B. (2022). Quality control of educational process in the lyceum of medical profile when learning in distance mode during the COVID-19 pandemic. Amazonia Investiga, 11(57), 121-132. https://doi.org/10.34069/AI/2022.57.09.13

Tsekhmister, Y., Kotyk, T., Matviienko, Y., Rudenko, Y., & Ilchuk, V. (2021). The effectiveness of augmented reality technology in STEAM education. Apuntes Universitarios, 12(1), 250–267. https://doi.org/10.17162/au.v11i5.932

Vandeyar, T. (2013). Practice as policy in ICT for education: Catalysing communities of practice in education in South Africa. Technology in Society, 35(4), 248-257. https://doi.org/10.1016/j.techsoc.2013.10.002

Yuskovych-Zhukovska, V., Bogut, O., Lotyuk, Y., Kravchuck, O., Rudenko, O., & VasylEnko, H. (2022). E-Learning in a postmodern society. Postmodern Openings, 13(1 Sup1), 447-464. https://doi.org/10.18662/po/13.1Sup1/435

Zander, L., & Ertl, B. (2023). Female students' belonging uncertainty in higher education STEM environments. In L. Zander & B. Ertl (Eds.), The Routledge International Handbook of Gender Beliefs, Stereotype Threat, and Teacher Expectations (pp. 67-78). London: Routledge. https://doi.org/10.4324/9781003275763-8

Downloads

Publicado

2024-03-28

Como Citar

Hubal, H. ., Siasiev, A. ., Sipii, V. ., Syrmamiikh, I. ., & Burtovyi, S. (2024). As Tecnologias Digitais no Processo de Ensino das Disciplinas STEM: : Desafios e Perspectivas. Cadernos De Educação, Tecnologia E Sociedade, 17(1), 445–458. https://doi.org/10.14571/brajets.v17.n1.445-458

Edição

Seção

Inovações e Desafios na Educação Superior