Lógica Fuzzy na Agricultura

Breve Histórico

Autores

DOI:

https://doi.org/10.14571/brajets.v15.n1.126-139

Resumo

O objetivo desse artigo fora através de uma revisão bibliográfica sistemática verificar a resposta da pergunta "Como está registrado o estado do conhecimento histórico sobre a aplicação da lógica Fuzzy na agricultura?". A revisão bibliográfica sistemática é um método científico para busca e análise de artigos de uma determinada área da ciência. É amplamente utilizada em pesquisas na medicina, psicologia e agricultura e áreas correlatas, onde há grandes massas de dados e fontes de informações. Devido a relevância fora selecionada a base de dados Scopus® ELSEVIER. Observou-se que as palavras Agriculture e Logic fuzzy foram utilizadas na pesquisa como Strings unidimensional. Após aplicação dos filtros foram selecionados 42 artigos os quais tiveram levantamento do conteúdo para verificação dos resultados. Após esse levantamento agrupou-se os artigos pelos temas bioenergia, solo, irrigação e drenagem, humanidades digitais, sustentabilidade, tecnologia integrada a internet e combinações entre os temas. Concluiu-se que a Lógica Fuzzy e sua aplicabilidade na agricultura é amplamente difundida no mundo e que trouxe avanços tecnológicos capazes de colaborar para solução de problemas agrícolas de grande abrangência consolidando, como a grande dificuldade do produtor em alguns manejos com animais e/ou com os tratos culturais nas lavouras, assim a importância da técnica interdisciplinar e capaz de colaborar com os resultados do produtor rural.

Referências

AGHALOO, K.; CHIU, Y. R. Identifying optimal sites for a rainwater-harvesting agricultural scheme in iran using the best-worst method and fuzzy logic in a GIS-based decision support system. Water (Switzerland), v. 12, n. 7, 1 jul. 2020.

ALI, B.; ASHRAF, M. W.; TAYYABA, S. Simulation, fuzzy analysis and development of ZnO nanostructure-based piezoelectric MEMS energy harvester. Energies, v. 12, n. 5, 28 fev. 2019.

ALMEIDA, M. A. DE; DAMIAN, I. P. M. Humanidades Digitais: um campo praxiológico para Mediações e Políticas Culturais? XVI Encontro Nacional de Pesquisa em Pós-Graduação em Ciência da Informação. Anais...2015

ALVES, L. N. VALOR BRUTO DA PRODUÇÃO: Análise dos Resultados Preliminares 14 de agosto de 2020. Curitiba: [s.n.].

AMINI, S. et al. Sustainability assessment of rice production systems in Mazandaran Province, Iran with emergy analysis and fuzzy logic. Sustainable Energy Technologies and Assessments, v. 40, 1 ago. 2020a.

AMINI, S. et al. Assessment of land suitability and agricultural production sustainability using a combined approach (Fuzzy-AHP-GIS): A case study of Mazandaran province, Iran. Information Processing in Agriculture, v. 7, n. 3, p. 384–402, 1 set. 2020b.

ANOKHINA, M. Parameters of the strategy for managing the economic growth of agricultural production in russia. Agricultural Economics (Czech Republic), v. 66, n. 3, p. 140–148, 2020.

AQUINO, E. L. R. DE et al. Ferramentas de manutenção preditiva de motores diesel: uma revisão bibliográfica sistemática. Research, Society and Development, v. 9, n. 11, p. e57691110195, 2020.

ASHRAF, A.; AKRAM, M.; SARWAR, M. Fuzzy decision support system for fertilizer. Neural Computing and Applications, v. 25, n. 6, p. 1495–1505, 14 out. 2014.

ASSAR, W. et al. Assessing the agricultural drainage water with water quality indices in the El-Salam Canal Mega Project, Egypt. Water (Switzerland), v. 11, n. 5, 1 maio 2019.

BALACHANDRAN, S.; LAKSHMI, S.; RAJENDRAN, N. Irrigation system using hyperspectral data and machnie learning techniques for smart agriculture. Journal of Computer Science, v. 16, n. 4, p. 576–582, 2020.

BAUMGERTEL, A. et al. Identifying areas sensitive to Wind Erosion-A case study of the AP Vojvodina (Serbia). Applied Sciences (Switzerland), v. 9, n. 23, 1 dez. 2019.

BAYRAKDAR, M. E. Enhancing sensor network sustainability with fuzzy logic based node placement approach for agricultural monitoring. Computers and Electronics in Agriculture, v. 174, 1 jul. 2020.

CASTRO, C. Humanidades digitais. Estudos Historicos, v. 33, n. 69, p. 1–2, 2020.

CAY, T.; ISCAN, F. Fuzzy expert system for land reallocation in land consolidation. Expert Systems with Applications, v. 38, n. 9, p. 11055–11071, set. 2011.

CEPEA, C. DE E. A. EM E. A. PIB do agronegócio alcança participação de 26,6% no PIB brasileiro em 2020. Piracicaba: [s.n.].

CHANG, C. L.; LIN, K. M. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics, v. 7, n. 3, 19 jul. 2018.

CONFORTO, E. C.; AMARAL, D. C.; SILVA, S. L. DA. Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, n. 1998, p. 1–12, 2011.

COSTA, L. B. et al. METODOLOGIA CIENTíFICA NA ASSISttNCIA DE ENFERMAGEM A FAMíLIA Descrição do Instrumento : Dados complementares Classificação do. p. 1977–1979, 1978.

COULON-LEROY, C. et al. Imperfect knowledge and data-based approach to model a complex agronomic feature - Application to vine vigor. Computers and Electronics in Agriculture, v. 99, p. 135–145, 2013.

CRONIN, J. et al. Land suitability for energy crops under scenarios of climate change and land-use. GCB Bioenergy, v. 12, n. 8, p. 648–665, 1 ago. 2020.

FANTINI, A. et al. Agroturismo e circuitos curtos de comercialização de alimentos orgânicos na associação “Acolhida na Colônia” - SC/Brasil. Revista de Economia e Sociologia Rural, v. 56, n. 3, p. 517–534, 1 jul. 2018.

FRANCO, J. D. et al. Monitoring of Ocimum basilicum seeds growth with image processing and fuzzy logic techniques based on Cloudino-IoT and FIWARE platforms. Computers and Electronics in Agriculture, v. 173, 1 jun. 2020.

G, L.; C, R.; P, G. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustainable Computing: Informatics and Systems, v. 28, 1 dez. 2020.

GALVÃO, C. M.; SAWADA, N. O.; TREVIZAN, M. A. Revisão sistemática: recurso que proporciona a incorporação das evidências na prática da enfermagem. Revista latino-americana de enfermagem, v. 12, n. 3, p. 549–556, 2004.

GODINHO, E. Z. et al. Exigência nutricional da beterraba. Revista Cultivar - hortaliças e frutas, v. 1, n. 114, p. 16–18, 2019a.

GODINHO, E. Z. et al. Pré-tratamento hidrotérmico alcalino e alcalino-oxidativo sobre os teores de celulose e lignina em biomassa de capim elefante BRS Capiaçu. Journal of Bioenergy and Food Science, v. 6, n. 3, p. 51–65, 2019b.

GODINHO, E. Z. et al. Resposta da beterraba com aplicação de fertilizante foliar em Palotina/PR. Journal of Agronomic Sciences, Umuarama, v. 9, n. 1, p. 138–148, 2020.

HOFFMANN, Y. T.; BISSET ALVAREZ, E.; MARTÍ-LAHERA, Y. Análise textual com IRaMuTeQ de pesquisas recentes em História da educação matemática no Brasil: um exemplo de Humanidades Digitais. Investigación Bibliotecológica: archivonomía, bibliotecología e información, v. 34, n. 84, p. 103, 2020.

JAISIN, C. et al. A prototype of a low-cost solar-grid utility hybrid load sharing system for agricultural DC loads. International Journal of Energy and Environmental Engineering, v. 10, n. 1, p. 137–145, 1 mar. 2019.

KHUDOYBERDIEV, A. et al. An optimization scheme based on fuzzy logic control for efficient energy consumption in hydroponics environment. Energies, v. 13, n. 2, 2020.

KOKKINOS, K.; KARAYANNIS, V.; MOUSTAKAS, K. Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment. Science of the Total Environment, v. 721, 15 jun. 2020.

KOLOKOTSA, D. et al. Development of an intelligent indoor environment and energy management system for greenhouses. Energy Conversion and Management, v. 51, n. 1, p. 155–168, jan. 2010.

KRETER, A. C.; PASTRE, R.; FILHO, G. S. B. Comércio exterior de agronegócio : Balanço de 2020 e perspectivas para 2021. Carta Conjuntura, n. 29, p. 1–15, 2021.

LAHLOUH, I. et al. Experimental implementation of a new multi input multi output fuzzy-PID controller in a poultry house system. Heliyon, v. 6, n. 8, 1 ago. 2020.

LAMBERT, G. F. et al. An expert system for predicting orchard yield and fruit quality and its impact on the Persian lime supply chain. Engineering Applications of Artificial Intelligence, v. 33, p. 21–30, 2014.

LAYKIN, S.; ALCHANATIS, V.; EDAN, Y. On-line multi-stage sorting algorithm for agriculture products. Pattern Recognition, v. 45, n. 7, p. 2843–2853, jul. 2012.

LAZZAROTTO, D. R. Avaliação da Sustentabilidade da Floresta Nacional de Irati por Meio de Lógica Fuzzy. Floresta e Ambiente, v. 25, n. 1, p. 1–11, 2018.

LEWIS, S. M. et al. A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States. Computers and Electronics in Agriculture, v. 103, p. 39–47, 2014.

LI, Q.; YAN, J. Assessing the health of agricultural land with emergy analysis and fuzzy logic in the major grain-producing region. Catena, v. 99, p. 9–17, dez. 2012.

MACEDO-CRUZ, A. et al. Digital image sensor-based assessment of the status of oat (Avena sativa L.) crops after frost damage. Sensors, v. 11, n. 6, p. 6015–6036, jun. 2011.

MARGARITA, Z.-D. C. L. et al. Potencialidades del bagazo para la obtención de etanol frente a la generación de electricidad. Ingeniería, Investigación y Tecnología, v. 16, n. 3, p. 407–418, 2015.

MENG, X. et al. Fuzzy min-max neural network with fuzzy lattice inclusion measure for agricultural circular economy region division in heilongjiang province in china. IEEE Access, v. 8, p. 36120–36130, 2020.

MESQUITA, L. et al. Metodologia do design educacional no desenvolvimento de sequˆ encias de ensino e aprendizagem no ensino de f ´ ?sica Educational design methodology in the development of teaching and learning sequences in physics teaching. Revista Brasileira de Ensino de Física, v. 43, p. e20200443, 2021.

NETO, D. DOS S. V. et al. FUZZY MODELING OF THE EFFECTS OF IRRIGATION AND WATER SALINITY IN HARVEST POINT OF TOMATO CROP. PART I: DESCRIPTION OF THE METHOD. Engenharia Agricola, v. 39, n. 3, 1 maio 2019.

PANDEY, A. et al. Crop parameters estimation by fuzzy inference system using X-band scatterometer data. Advances in Space Research, v. 51, n. 5, p. 905–911, 1 mar. 2013.

PAPAGEORGIOU, E. I.; MARKINOS, A. T.; GEMTOS, T. A. Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Applied Soft Computing Journal, v. 11, n. 4, p. 3643–3657, jun. 2011.

PETKOVI?, B. et al. Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and Electronics in Agriculture, v. 173, 1 jun. 2020.

REN, C.; YANG, J.; ZHANG, H. An inexact fractional programming model for irrigation water resources optimal allocation under multiple uncertainties. PLoS ONE, v. 14, n. 6, 1 jun. 2019.

RIGNEL, D. G. D. S.; CHENCI, G. P.; LUCAS, C. A. Uma Introdução a Lógica Fuzzy. Revista Eletrônica de Sistemas de Informação e Gestão Tecnológica, v. 1, Nr 1, p. 17–28, 2011.

RODRIGUES, A. Humanidades Digitais E Diáspora Africana: Questões Éticas E Metodológicas Na Elaboração De Uma Base De Dados Sobre a População Escravizada De Mariana (Século Xviii). Estudos Históricos (Rio de Janeiro), v. 33, n. 69, p. 64–87, 2020.

SABRI, N. et al. Cognitive wireless sensor actor network: An agricultural perspective. International Journal of Innovative Computing, Information and Control, v. 10, n. 2, p. 631–658, 2014.

SACOMANO NETO, M. Análise das Redes: Estrutura e Relações. XXIII Encontro Nacional de Engenharia de Produção, p. 1–8, 2003.

SAMI, M. et al. Assessing the sustainability of agricultural production systems using fuzzy logic. Journal of Central European Agriculture, v. 14, n. 3, p. 318–330, 2013.

SOUZA, R. A importância de fundamentos robustos em metodologia científica. Jornal Brasileiro de Pneumologia, v. 44, n. 5, p. 350–351, 2018.

TORTOLA, E.; ALMEIDA, L. M. W. DE. Reflexões a respeito do uso da modelagem matemática em aulas nos anos iniciais do ensino fundamental. Revista Brasileira de Estudos Pedagógicos, v. 94, n. 237, p. 619–642, 2013.

VÁSQUEZ, R. P. et al. Expert system based on a fuzzy logic model for the analysis of the sustainable livestock production dynamic system. Computers and Electronics in Agriculture, v. 161, p. 104–120, 1 jun. 2019.

XUE, J.; ZHANG, L.; GRIFT, T. E. Variable field-of-view machine vision based row guidance of an agricultural robot. Computers and Electronics in Agriculture, v. 84, p. 85–91, jun. 2012.

ZHANG, X.; CAI, X. Climate change impacts on global agricultural land availability. Environmental Research Letters, v. 6, n. 1, 2011.

ZHAO, S. et al. Feed requirement determination of grass carp (Ctenopharyngodon idella) using a hybrid method of bioenergetics factorial model and fuzzy logic control technology under outdoor pond culturing systems. Aquaculture, v. 521, 15 maio 2020.

Publicado

2022-03-20

Como Citar

Zullo Godinho, E., Gasparotto, H. V., & de Lima Caneppele, F. (2022). Lógica Fuzzy na Agricultura: Breve Histórico. Cadernos De Educação Tecnologia E Sociedade, 15(1), 126–139. https://doi.org/10.14571/brajets.v15.n1.126-139

Edição

Secção

Article