Avaliação da precisão das técnicas de mapeamento para criação de superfícies e cálculo de volumes em diferentes terrenos hipotéticos

Autores

  • Hussein A. Saleem King Abdulaziz University

DOI:

https://doi.org/10.14571/brajets.v17.nse3.231-254

Palavras-chave:

Integração numérica, Métodos de gradeamento, Cálculo de volume, Superfícies hipotéticas, Aplicações em mineração, Topografia de superfícies, Software Surfer

Resumo

O objetivo deste estudo é avaliar a precisão de diversos métodos de gradeamento e abordagens de integração numérica para representar superfícies com precisão e calcular volumes entre duas superfícies. Três categorias de superfícies hipotéticas foram geradas, e os volumes foram calculados utilizando integração analítica em Python. Essas superfícies serviram como referência para comparação com outras formas de superfície e volumes calculados. Vários métodos de gradeamento disponíveis no software Surfer foram comparados, e os volumes calculados foram analisados em relação aos obtidos por integração analítica em Python. Métricas estatísticas como erro absoluto, erro quadrático médio e erro percentual absoluto foram utilizadas para avaliar a precisão de cada abordagem. Os resultados mostraram que métodos como Kriging, inverso da distância elevada a uma potência, triangulação com interpolação linear, curvatura mínima, vizinho mais próximo, função de base radial e o método de Shepard modificado apresentaram maior precisão em todos os tipos de superfícies. O método de vizinho natural apresentou inconsistência em todas as categorias de superfícies, enquanto o método polinomial local teve resultados variáveis. Métodos como regressão polinomial, média móvel e métricas baseadas em dados foram excluídos do estudo devido à baixa precisão na representação do terreno e à geração de estimativas de volume e formas de terreno inválidas.

Referências

Arif, M., Jamshidi, A., Ullah, F., Zamir, M. T., Gelbukh, A., & Sidorov, G. (2024). Identification of Fake Users in Mobile Communication Using Sentiment Analysis Techniques. In Mexican Inter-national Conference on Artificial Intelligence (pp. 196-210). Cham: Springer Nature Switzerland.

Belkhiri, L., Mouni, L., Narany, T. S., & Tiri, A. (2017). Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development, 4, 12-22.

Bralić, N., & Malvić, T. (2022). Cement raw material reserve calculation—geological sections vs. structural maps approaches, case study from Southern Croatia. Minerals, 12(8), 1056.

Bronowicka-Mielniczuk, U., Mielniczuk, J., Obroślak, R., & Przystupa, W. (2019). A comparison of some interpolation techniques for determining spatial distribution of nitrogen compounds in groundwater. International Journal of Environmental Research, 13, 679-687.Ekpa, A. U., Eyoh, A. E., & Ubom, O. (2009). A comparative analysis of volumetric stockpile from UAV photogram-metry and total station data. SSRG Int. J. Geoinform. Geol. Sci, 6, 29-37.

Celant, G., & Broniatowski, M. (2016). Interpolation and extrapolation optimal designs V1: polynomial regression and approximation theory (Vol. 1). John Wiley & Sons, 911-1021

Conn, A. R., Scheinberg, K., & Vicente, L. N. (2008). Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation. IMA journal of numerical analysis, 28(4), 721-748.

Ekun, M. O., Ehigiator-Irughe, R., & Okonofua, E. S. (2016). Determination of area and volume from dredged geodata set. Nigerian Journal of Technology, 35(4), 707-712.

Gerassis, S., Giráldez, E., Pazo-Rodríguez, M., Saavedra, Á., & Taboada, J. (2021). AI approaches to environmental impact assessments (EIAs) in the mining and metals sector using AutoML and Bayesian modeling. Applied Sciences, 11(17), 7914.

Gonet, T., & Gonet, K. (2017). Alternative Approach to Evaluating Interpolation Methods of Small and Imbalanced Data Sets. Geomatics and Environmental Engineering, 11(3), 98-105.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. Inter-national journal of forecasting, 22(4), 679-688.

Iwahashi, J., & Pike, R. J. (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3-4), 409-440.

Jamshidi, A., Kaur, K., Gangopadhyay, A., & Zhang, L. (2024). Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning. arXiv preprint arXiv:2410.13140.

Jamshidi A., & Baghdadi G. (2018), The effect of negative and positive feedbacks on N200 & P300 ERP components recorded under Visual two-back Continuous Performance Test on normal par-ticipants, Conference: Labroots: POSTER SESSION: Neuroscience 2018, labroots.com

Karim, M. M., & Howladar, M. F. (2013). Volumetric estimation of coal resources in seam VI for require backfill materials of Barapukuria coal mine, Dinajpur, Bangladesh. Earth Sci, 2(6), 113-119.

Krige, D., & Kleingeld, W. (2005). The genesis of geostatistics in gold and diamond industries. In Space, Structure and Randomness: Contributions in Honor of Georges Matheron in the Field of Geostatistics, Random Sets and Mathematical Morphology (pp. 5-16). New York, NY: Springer New York.

Kumar, N., & Sinha, N. K. (2018). Geostatistics: Principles and applications in spatial mapping of soil properties. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 143-159.

Lee, B.S. (2019), Numerical Integration Methods. In Hydrostatics and Stability of Marine Vehicles (Theory and Practice), 2nd ed.; Xiros, N.I., Ed.; Springer: Glasgow, Lanarkshire, UK, Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping, 7, 39–51. https://doi.org/10.1007/978-981-13-2682-0

Lee, K., & Lee, W. H. (2022). Earthwork volume calculation, 3D model generation, and compar-ative evaluation using vertical and high-oblique images acquired by unmanned aerial vehicles. Aerospace, 9(10), 606.

Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists; Record 2008/23, pp. 4–25.

Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4), 228-241.

Long Nguyen Q. Xuan Cuong C., Van Canh L., Ngoc Bich, N., An Tran D., Bui X.-N., (2020), 3D Spatial Interpolation Methods for Air Quality Assessment in Open Pit Mines with Data Obtained by a Monitoring System Based on Common Unmanned Aerial Vehicle (UAV). Mineral Engineering, 1(2), 263-273. https://doi.org/10.29227/IM-2020-02-32.

Malvić, T., Ivšinović, J., Velić, J., Sremac, J., & Barudžija, U. (2020). Application of the modified shepard’s method (msm): A case study with the interpolation of neogene reservoir variables in northern croatia. Stats, 3(1), 68-83.

Mohamed, A., & Mostafa, H. (2019). Volume calculation of irregular object using multiple software packages. Journal of Al-Azhar University Engineering Sector, 14(50), 75-86.

Ozelkan, E., Chen, G., & Ustundag, B. B. (2016). Spatial estimation of wind speed: a new integrative model using inverse distance weighting and power law. International Journal of Digital Earth, 9(8), 733-747.Pike, R. J. (1988). The geometric signature: quantifying landslide-terrain types from digital elevation models. Mathematical geology, 20, 491-511.

Sarwal, A., Simon, D., & Rajagopalan, V. (2003). Terrain classification. In Unmanned Ground Vehicle Technology V (Vol. 5083, pp. 156-163). SPIE.

Schaum, A. (2008). Principles of local polynomial interpolation. In 2008 37th IEEE Applied Imagery Pattern Recognition Workshop (pp. 1-6). IEEE. https://doi.org/10.1109/AIPR.2008.4906463.

Shukla, K., Kumar, P., Mann, G. S., & Khare, M. (2019). Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustainable cities and society, 54, 101997.

Septarini, A.; Soeksmantono, B.; Wikantika, K. Lidar Application Study to Calculate Mine Exca-vation Volume. In Proceedings of the 34th Asian Conference on Remote Sensing, Bali, Indonesia, 20-24 October 2013.

Spray, J. A. (1986). Absolute error revisited: An accuracy indicator in disguise. Journal of Motor Behavior, 18(2), 225-238. https://doi.org/10.1080/00222895.1986.10735379.

Suh, J., Kim, S. M., Yi, H., & Choi, Y. (2017). An overview of GIS-based modeling and assessment of mining-induced hazards: Soil, water, and forest. International journal of environmental research and public health, 14(12), 1463.

Tubis, A., Werbińska-Wojciechowska, S., & Wroblewski, A. (2020). Risk assessment methods in mining industry—a systematic review. Applied Sciences, 10(15), 5172.

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John Wiley & Sons.

Yakar, M., & Yilmaz, H. M. (2008). Using in volume computing of digital close range photo-grammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial In-formation Sciences, 37, B3b.

Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39, 387-394.

Yanalak, M. (2003). Effect of gridding method on digital terrain model profile data based on scattered data. Journal of computing in civil engineering, 17(1), 58-67.

Yang, C. S., Kao, S. P., Lee, F. B., & Hung, P. S. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. In Proceedings of the XXth ISPRS congress (Vol. 35, pp. 778-785).

Yilmaz, H.M. Close Range Photogrammetry in Volume Computing. Exp. Tech. 2010, 34, 48-54. https://doi.org/10.1111/j.1747-1567.2009.00476.x

Downloads

Publicado

2024-10-24

Edição

Seção

Novel approaches in education, society and culture development