Individualized Recommender Systems for Teaching
A Systematic Literature Mapping
DOI:
https://doi.org/10.14571/brajets.v17.n3.878-908Palavras-chave:
individualized recommender systems, education, systematic mapping, literature classification, future developmentResumo
This paper aims to comprehensively study the current research in individualized recommender systems for education. The study uses a systematic mapping method to classify and organize the literature on this topic. The analysis is based on the frequency of publications within the classification scheme, using 1583 articles from the leading scientific databases of the last five years. The main techniques, tools, and strategies employed in creating and implementing these systems will be identified through this study. Understanding the present status of research in this field is crucial to support these systems' future development.Referências
Aeiad, E., & Meziane, F. (2019). An adaptable and personalised E-learning system applied to computer science programmes design. Education and Information Technologies, 24, 1485–1509.
Afoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375.
Agarwal, A., Mishra, D. S., & Kolekar, S. V. (2022). Knowledge-based recommendation system using semantic web rules based on learning styles for MOOCs. Cogent Engineering, 9, 2022568.
Alamri, H. A., Watson, S., & Watson, W. (2021). Learning technology models that support personalization within blended learning environments in higher education. TechTrends, 65, 62–78.
Ali, S., Hafeez, Y., Humayun, M., Jamail, N. S. M., Aqib, M., & Nawaz, A. (2022). Enabling Recommendation System Architecture in Virtualized Environment for E-learning. Egyptian Informatics Journal, 23, 33–45. https://doi.org/10.1016/j.eij.2021.05.003
Alvarez, L., & Geoffre, T. (2020). Adaptive Learning to Support Reading Skills Development for All: Using a Single-Case Experimental Design to Monitor, Describe, and Assess the Impact of Adaptive Learning on Language Development of a Diversity of K-12 Pupils. In V. Kumar & C. Troussas (Eds.), Intelligent Tutoring Systems (Vol. 12149, pp. 11–16). Springer International Publishing. https://doi.org/10.1007/978-3-030-49663-0_2
Alzahrani, F. K. J., & Alhalafawy, W. S. (2022). Benefits and challenges of using gamification across distance learning platforms at higher education: A systematic review of research studies published during the COVID-19 pandemic. Journal of Positive School Psychology, 6, 1948–1977.
Amrutkar, S., Mahakal, S., & Naidu, A. (2021). Recommender Systems for University Elective Course Recommendation. In R. Kumar, R. K. Dohare, H. Dubey, & V. P. Singh (Eds.), Applications of Advanced Computing in Systems (pp. 247–257). Algorithms for Intelligent Systems. Springer Singapore. https://doi.org/10.1007/978-981-33-4862-2_27
Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet recommendation systems.
Baidada, M., Mansouri, K., & Poirier, F. (2019). Hybrid Recommendation Approach in Online Learning Environments. In A. Rocha & M. Serrhini (Eds.), Information Systems and Technologies to Support Learning (pp. 39–43). Smart Innovation, Systems and Technologies, Vol. 111. Springer International Publishing. https://doi.org/10.1007/978-3-030-03577-8_5
Bel Hadj Ammar, W., Chaabouni, M., & Ben Ghezala, H. (2020). Recommender system for quality educational resources. In V. Kumar & C. Troussas (Eds.), Intelligent Tutoring Systems (Vol. 12149, pp. 327–334). Lecture Notes in Computer Science, Springer International Publishing. https://doi.org/10.1007/978-3-030-49663-0_39
Bennani, S., Maalel, A., & Ghezala, H. B. (2020). AGE-Learn: Ontology-Based Representation of Personalized Gamification in E-learning. Procedia Computer Science, 176, 1005–1014. https://doi.org/10.1016/j.procs.2020.09.096
Bhaskaran, S., & Marappan, R. (2021). Design and analysis of an efficient machine learning-based hybrid recommendation system with enhanced density-based spatial clustering for digital e-learning applications. Complex & Intelligent Systems, 2021. https://doi.org/10.1007/s40747-021-00509-4
Brahim, H. B., Khribi, M. K., Jemni, M., & Tlili, A. (2020). Promoting Inclusive Open Education: A Holistic Approach Towards a Novel Accessible OER Recommender System. In K. Miesenberger, R. Manduchi, M. Covarrubias Rodriguez, & P. Penˇáz (Eds.), Computers Helping People with Special Needs (Vol. 12377, pp. 166–176). Springer International Publishing. https://doi.org/10.1007/978-3-030-58805-2_20
Campos, R., dos Santos, R. P., & Oliveira, J. (2020). A Recommendation System Based on Knowledge Gap Identification in MOOCs Ecosystems. In Proceedings of the XVI Brazilian Symposium on Information Systems (SBSI’20) (pp. 1–10). https://doi.org/10.1145/3411564.3411572
Cárdenas-Cobo, J., Novoa-Hernández, P., Puris, A., & Benavides, D. (2018). Recommending Exercises in Scratch: An Integrated Approach for Enhancing the Learning of Computer Programming. In M. E. Auer & K. S. Kim (Eds.), Engineering Education for a Smart Society (Vol. 627, pp. 255–271). Advances in Intelligent Systems and Computing. Springer International Publishing. https://doi.org/10.1007/978-3-319-60937-9_20
Cerna, M. (2020). Modified recommender system model for the utilized eLearning platform. Journal of Computers in Education, 7, 105–129. https://doi.org/10.1007/s40692-019-00133-9
Cerna, M., & Borkovcova, A. (2018). Blended Learning Concept in Selected Tourism Management e-Courses with Focus on Content Development Including Recommender System. In S. K. Cheung, L. f. Kwok, K. Kubota, L. K. Lee, & J. Tokito (Eds.), Blended Learning. Enhancing Learning Success (Vol. 10949, pp. 175–187). Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-94505-7_14
Chen, S. Y., & Wang, J. H. (2021). Individual differences and personalized learning: a review and appraisal. Universal Access in the Information Society, 20, 833–849.
Choudhury, S., & Pattnaik, S. (2020). Emerging themes in e-learning: A review from the stakeholders’ perspective. Computers & Education, 144, 103657.
Cui, Z., Xu, X., Fei, X., Cai, X., Cao, Y., Zhang, W., & Chen, J. (2020). Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Transactions on Services Computing, 13, 685–695.
Dai, J. Y., Yeh, K. L., Kao, M. T., Yuan, Y. H., & Chang, M. W. (2021). Applying Petri-Net to Construct Knowledge Graphs for Adaptive Learning Diagnostics and Learning Recommendations. Journal of Research in Education Sciences, 66, 61–105. https://doi.org/10.6209/JORIES.202109_66(3).0003
Dhaiouir, I., Ezziyyani, M., & Khaldi, M. (2022). The personalization of learners’ educational paths e-learning. In M. Ben Ahmed, H. N. L. Teodorescu, T. Mazri, P. Subashini, & A. A. Boudhir (Eds.), Networking, Intelligent Systems and Security (Vol. 237, pp. 521–534). Springer Singapore. https://doi.org/10.1007/978-981-16-3637-0_37
Dias, A.d.S., & Wives, L.K. (2019). Recommender system for learning objects based on the fusion of social signals, interests, and preferences of learner users in ubiquitous e-learning systems. Personal and Ubiquitous Computing, 23, 249–268. https://doi.org/10.1007/s00779-018-01197-7
Djeghri, H., Seridi, H., Messaadia, M., & Khadir, M. (2021). A Recommendation System for improving student life Based on Neural Network and Matrix Vectorization. In Proceedings of the 2021 1st International Conference On Cyber Management and Engineering, CyMaEn 2021. https://doi.org/10.1109/CyMaEn50288.2021.9497295
Dwivedi, P., Kant, V., & Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable length genetic algorithm. Education and Information Technologies, 23, 819–836. https://doi.org/10.1007/s10639-017-9637-7
Esteban, A., Zafra, A., & Romero, C. (2020). Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization. Knowledge-Based Systems, 194, 105385. https://doi.org/10.1016/j.knosys.2019.105385
Ezaldeen, H., Misra, R., Bisoy, S. K., Alatrash, R., & Priyadarshini, R. (2022). A hybrid E-learning recommendation integrating adaptive profiling and sentiment analysis. Journal of Web Semantics, 72, 100700. https://doi.org/10.1016/j.websem.2021.100700
Ezz, M., & Elshenawy, A. (2020). Adaptive Recommendation System Using Machine Learning Algorithms for Predicting Student’s Best Academic Program. Education and Information Technologies, 25, 2733–2746. https://doi.org/10.1007/s10639-019-10049-7
Fake, H., & Dabbagh, N. (2020). Personalized learning within online workforce learning environments: Exploring implementations, obstacles, opportunities, and perspectives of workforce leaders. Technology, Knowledge and Learning, 25(3), 789–809. https://doi.org/10.1007/s10758-020-09441-x
Gemmis, M. d., Lops, P., Musto, C., Narducci, F., & Semeraro, G. (2015). Semantics-aware content-based recommender systems. In Recommender systems handbook (pp. 119–159). Springer.
George, G., & Lal, A. M. (2019). Review of ontology-based recommender systems in e-learning. Computers & Education, 142, 103642. https://doi.org/10.1016/j.compedu.2019.103642
Gumbheer, C. P., Khedo, K. K., & Bungaleea, A. (2022). Personalized and Adaptive Context-Aware Mobile Learning: Review, challenges and future directions. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10942-8
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., & He, Q. (2020). A survey on knowledge graph-based recommender systems. IEEE Transactions on Knowledge and Data Engineering.
Hammad, R. (2018). A hybrid e-learning framework: Process-based, semantically-enriched and service-oriented (PhD thesis). University of the West of England.
Hui, B., Zhang, L., Zhou, X., Wen, X., & Nian, Y. (2022). Personalized recommendation system based on knowledge embedding and historical behavior. Applied Intelligence, 52, 954–966.
Intayoad, W., Kamyod, C., & Temdee, P. (2020). Reinforcement learning based on contextual bandits for personalized online learning recommendation systems. Wireless Personal Communications, 115, 2917–2932. https://doi.org/10.1007/s11277-020-07199-0
Jannach, D., & Zanker, M. (2022). Value and impact of recommender systems. In Recommender Systems Handbook (pp. 519–546). Springer.
Jeske, D., Pantidi, N., & Bagher, M. (2021). Chapter 13 - Personalizing alternatives for diverse learner groups: readability tools. In S. Caballé, S. N. Demetriadis, E. Gómez-Sánchez, P. M. Papadopoulos, & A. Weinberger (Eds.), Intelligent Systems and Learning Data Analytics in Online Education (pp. 301–321). Intelligent Data-Centric Systems, Academic Press. https://doi.org/10.1016/B978-0-12-823410-5.00003-6
Kadirbergenovna, B. L. (2022). Massive open online course basic requirements for digital educational resources. In Proceedings of the Conference Zone (pp. 187–190).
Kale, R., Rudrawar, S., & Agrawal, N. (2022). Movie Recommendation System Using Hybrid Collaborative Filtering Model. In Computational Vision and Bio-Inspired Computing (pp. 109–117). Springer.
Khan, S. S., Abedi, A., & Colella, T. (2022). Inconsistencies in measuring student engagement in virtual learning–A critical review. arXiv preprint arXiv:2208.04548.
Khoshkangini, R., Valetto, G., Marconi, A., & Pistore, M. (2021). Automatic generation and recommendation of personalized challenges for gamification. User Modeling and User-Adapted Interaction, 31, 1–34. https://doi.org/10.1007/s11257-019-09255-2
Kim, H. J., Hong, A. J., & Song, H. D. (2019). The roles of academic engagement and digital readiness in students’ achievements in university e-learning environments. International Journal of Educational Technology in Higher Education, 16, 1–18.
Kim, S., Kim, W., & Kim, H. (2021). Learning Path Construction Using Reinforcement Learning and Bloom’s Taxonomy. In A. I. Cristea & C. Troussas (Eds.), Intelligent Tutoring Systems (pp. 267–278). Lecture Notes in Computer Science, Vol. 12677. Springer International Publishing. https://doi.org/10.1007/978-3-030-80421-3_29
Kolekar, S. V., Pai, R. M., & M.M, M. P. (2018). Adaptive User Interface for Moodle based E-learning System using Learning Styles. Procedia Computer Science, 135, 606–615. https://doi.org/10.1016/j.procs.2018.08.226
Kuka, L., Hörmann, C., & Sabitzer, B. (2022). Teaching and learning with AI in higher education: A scoping review. Learning with Technologies and Technologies in Learning, pp. 551–571.
Kulkarni, P.V., Rai, S., & Kale, R. (2020). Recommender System in eLearning: A Survey. In S. Bhalla, P. Kwan, M. Bedekar, R. Phalnikar, & S. Sirsikar (Eds.), Proceedings of International Conference on Computational Science and Applications (pp. 119–126). Algorithms for Intelligent Systems. Springer Singapore. https://doi.org/10.1007/978-981-15-0790-8_13
Lalitha, T. B., & Sreeja, P. S. (2020). Personalised self-directed learning recommendation system. Procedia Computer Science, 171, 583–592. https://doi.org/10.1016/j.procs.2020.04.063
Lhafra, F. Z., & Abdoun, O. (2022). Hybrid approach to recommending adaptive remediation activities based on assessment results in an E-learning system using machine learning. In J. Kacprzyk, V. E. Balas, & M. Ezziyyani (Eds.), Advanced Intelligent Systems for Sustainable Development (AI2SD'2020) (Vol. 1417, pp. 679–696). Springer International Publishing. https://doi.org/10.1007/978-3-030-90633-7_57
Li, X., Wang, T., Wang, H., & Tang, J. (2018). Understanding User Interests Acquisition in Personalized Online Course Recommendation. In L. H. U & H. Xie (Eds.), Web and Big Data (pp. 230–242). Lecture Notes in Computer Science, Vol. 11268. Springer International Publishing. https://doi.org/10.1007/978-3-030-01298-4_20
Lin, H., Huang, Y., & Luo, Y. (2021). The construction of learning resource recommendation system based on recognition technology. In S. Tiwari, M. C. Trivedi, K. K. Mishra, A. Misra, K. K. Kumar, & E. Suryani (Eds.), Smart Innovations in Communication and Computational Sciences (Vol. 1168, pp. 255–261). Advances in Intelligent Systems and Computing, Springer Singapore. https://doi.org/10.1007/978-981-15-5345-5_23
Lin, J., Li, Y., & Lian, J. (2020). A Novel Recommendation System via L0-Regularized Convex Optimization. Neural Computing and Applications, 32, 1649–1663. https://doi.org/10.1007/s00521-019-04213-w
Ling, H. C., & Chiang, H. S. (2022). Learning Performance in Adaptive Learning Systems: A Case Study of Web Programming Learning Recommendations. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.770637
Liu, F., & Guo, W. (2020). Research and Design of Personalized Recommendation System Model for Course Learning Based on Deep Learning in Grid Environment. In C. T. Yang, Y. Pei, & J. W. Chang (Eds.), Innovative Computing (Vol. 675, pp. 1707–1716). Springer Singapore. https://doi.org/10.1007/978-981-15-5959-4_208
Liu, H., & Li, X. (2020). Learning Path Combination Recommendation Based on the Learning Networks. Soft Computing, 24, 4427–4439. https://doi.org/10.1007/s00500-019-04205-x
Liu, L., Mehandjiev, N., & Xu, D. L. (2011). Multi-criteria service recommendation based on user criteria preferences. In Proceedings of the fifth ACM conference on Recommender systems (pp. 77–84).
Maravanyika, M., & Dlodlo, N. (2018). An Adaptive Framework for Recommender-Based Learning Management Systems. In Proceedings of the 2018 Open Innovations Conference (OI 2018) (pp. 203–212). https://doi.org/10.1109/OI.2018.8535816
Mejia, M. S., Jimenez, C. C., & Martínez-Santos, J. C. (2021). Career Recommendation System for Validation of Multiple Intelligence to High School Students. In J. C. Figueroa-García, Y. Díaz-Gutierrez, E. E. Gaona-García, & A. D. Orjuela-Cañón (Eds.), Applied Computer Sciences in Engineering (pp. 110–120). Communications in Computer and Information Science, Vol. 1431. Springer International Publishing. https://doi.org/10.1007/978-3-030-86702-7_10
Mengist, W., Soromessa, T., & Legese, G. (2020). Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX, 7, 100777.
Mohamed, M. H., Khafagy, M. H., & Ibrahim, M. H. (2019). Recommender systems challenges and solutions survey. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 149–155). IEEE.
Mohseni, M., Maher, M. L., Grace, K., Najjar, N., Abbas, F., & Eltayeby, O. (2019). Pique: Recommending a Personalized Sequence of Research Papers to Engage Student Curiosity. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. McLaren, & R. Luckin (Eds.), Artificial Intelligence in Education (Vol. 11626, pp. 201–205). Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-23207-8_38
Muñoz, J. L. R., Ojeda, F. M., Jurado, D. L. A., Peña, P. F. P., Carranza, C. P. M., Berríos, H. Q., Molina, S. U., Farfan, A. R. M., Arias-Gonzáles, J. L., & Vasquez-Pauca, M. J. (2022). Systematic Review of Adaptive Learning Technology for Learning in Higher Education. Eurasian Journal of Educational Research, 98, 221–233.
Murad, D. F., Heryadi, Y., Isa, S. M., & Budiharto, W. (2020). Personalization of study material based on predicted final grades using multi-criteria user-collaborative filtering recommender system. Education and Information Technologies, 25, 5655–5668. https://doi.org/10.1007/s10639-020-10238-9
Nafea, S. M., Siewe, F., & He, Y. (2020). A Novel Algorithm for Dynamic Student Profile Adaptation Based on Learning Styles. In Y. Bi, R. Bhatia, & S. Kapoor (Eds.), Intelligent Systems and Applications (Vol. 1037, pp. 29–51). Springer International Publishing. https://doi.org/10.1007/978-3-030-29516-5_4
Nguyen, V. A., Nguyen, H. H., Nguyen, D. L., & Le, M. D. (2021). A Course Recommendation Model for Students Based on Learning Outcome. Education and Information Technologies, 26, 5389–5415. https://doi.org/10.1007/s10639-021-10524-0
Pan, X., Wu, L., Long, F., & Ma, A. (2022). Exploiting user behavior learning for personalized trajectory recommendations. Frontiers of Computer Science, 16(1), 1–13. https://doi.org/10.1007/s11704-020-0243-2
Pariserum Perumal, S., Sannasi, G., & Arputharaj, K. (2019). An intelligent fuzzy rule-based e-learning recommendation system for dynamic user interests. The Journal of Supercomputing, 75, 5145–5160. https://doi.org/10.1007/s11227-019-02791-z
Pelánek, R. (2022). Adaptive, Intelligent, and Personalized: Navigating the Terminological Maze Behind Educational Technology. International Journal of Artificial Intelligence in Education, 32, 151–173. https://doi.org/10.1007/s40593-021-00251-5
Pereira, C. K., Campos, F., Ströele, V., David, J. M. N., & Braga, R. (2018). BROAD-RSI – educational recommender system using social networks interactions and linked data. Journal of Internet Services and Applications, 9, 7. https://doi.org/10.1186/s13174-018-0076-5
Rafiq, M. S., Jianshe, X., Arif, M., & Barra, P. (2021). Intelligent Query Optimization and Course Recommendation During Online Lectures in E-learning System. Journal of Ambient Intelligence and Humanized Computing, 12, 10375–10394. https://doi.org/10.1007/s12652-020-02834-x
Rahayu, N. W., Ferdiana, R., & Kusumawardani, S. S. (2022). A systematic review of ontology use in E-Learning recommender system. Computers and Education: Artificial Intelligence, 3, 100047. https://doi.org/10.1016/j.caeai.2022.100047
Rahhali, M., Oughdir, L., Jedidi, Y., Lahmadi, Y., & El Khattabi, M. Z. (2022). E-learning Recommendation System Based on Cloud Computing. In S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, & Y. Khamlichi (Eds.), WITS 2020 (pp. 89–99). Lecture Notes in Electrical Engineering, Vol. 745. Springer Singapore. https://doi.org/10.1007/978-981-33-6893-4_9
Raj, N. S., & Renumol, V. G. (2022). A systematic literature review on adaptive content recommenders in personalized learning environments from 2015 to 2020. Journal of Computers in Education, 9, 113–148. https://doi.org/10.1007/s40692-021-00199-4
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 127–134).
Rodrigues, H., Almeida, F., Figueiredo, V., & Lopes, S. L. (2019). Tracking e-learning through published papers: A systematic review. Computers & Education, 136, 87–98.
Sánchez-Sánchez, C., & Jaimez-González, C. R. (2022). Course Recommendation System for a Flexible Curriculum Based on Attribute Selection and Regression. In K. Arai (Ed.), Intelligent Systems and Applications (pp. 674–690). Lecture Notes in Networks and Systems, Vol. 296. Springer International Publishing. https://doi.org/10.1007/978-3-030-82199-9_46
Santoso, L. W. (2021). Adaptive Educational Resources Framework for E-Learning Using Rule-Based System. In T. Senjyu, P. N. Mahalle, T. Perumal, & A. Joshi (Eds.), Information and Communication Technology for Intelligent Systems (Vol. 195, pp. 385–396). Springer Singapore. https://doi.org/10.1007/978-981-15-7078-0_36
Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce (pp. 158–166).
Shanshan, S., Mingjin, G., & Lijuan, L. (2021). An improved hybrid ontology-based approach for online learning resource recommendations. Educational Technology Research and Development, 69, 2637–2661. https://doi.org/10.1007/s11423-021-10029-0
Sherbakova, E. E., Lvova, M. V., Zimina, E. K., Aboimova, I. S., & Kulagina, A. A. (2020). Expansion of personal development space of a student in the sphere of design. In E. G. Popkova & B. S. Sergi (Eds.), The 21st Century from the Positions of Modern Science: Intellectual, Digital and Innovative Aspects (Vol. 91, pp. 142–148). Lecture Notes in Networks and Systems, Springer International Publishing. https://doi.org/10.1007/978-3-030-32015-7_17
Shi, D., Wang, T., Xing, H., & Xu, H. (2020). A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning. Knowledge-Based Systems, 195, 105618. https://doi.org/10.1016/j.knosys.2020.105618
Shin, J., & Bulut, O. (2022). Building an intelligent recommendation system for personalized test scheduling in computerized assessments: A reinforcement learning approach. Behavior Research Methods, 54(1), 216–232. https://doi.org/10.3758/s13428-021-01602-9
Silva, W., Spalenza, M., Bourguet, J. R., & de Oliveira, E. (2020). Recommendation Filtering à la carte for Intelligent Tutoring Systems. In L. Boratto, S. Faralli, M. Marras, & G. Stilo (Eds.), Bias and Social Aspects in Search and Recommendation (Vol. 1245, pp. 58–65). Communications in Computer and Information Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-52485-2_6
Song, X., Zhang, X., & Yin, Y. (2022). A Solution for Modularized-Curriculum-Oriented E-Learning Teaching Plan Intelligent Recommend System. In J. C. Hung, J. W. Chang, Y. Pei, & W. C. Wu (Eds.), Innovative Computing (pp. 999–1005). Lecture Notes in Electrical Engineering, Vol. 791. Springer Singapore. https://doi.org/10.1007/978-981-16-4258-6_122
Sridharan, S., Saravanan, D., Srinivasan, A. K., & Murugan, B. (2021). Adaptive learning management expert system with evolving knowledge base and enhanced learnability. Education and Information Technologies, 26, 5895–5916. https://doi.org/10.1007/s10639-021-10560-w
Sun, L., Michael, E. I., Wang, S., & Li, Y. (2016). A Time-Sensitive Collaborative Filtering Model in Recommendation Systems. In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 340–344). IEEE.
Sunil, & Doja, M. N. (2020). An Improved Recommender System for E-Learning Environments to Enhance Learning Capabilities of Learners. In P. K. Singh, B. K. Panigrahi, N. K. Suryadevara, S. K. Sharma, & A. P. Singh (Eds.), Proceedings of ICETIT 2019 (Vol. 605, pp. 604–612). Lecture Notes in Electrical Engineering. Springer International Publishing. https://doi.org/10.1007/978-3-030-30577-2_53
Tang, C., & Zhang, J. (2022). An intelligent deep learning-enabled recommendation algorithm for teaching music students. Soft Computing. https://doi.org/10.1007/s00500-021-06709-x
Tavakoli, M., Faraji, A., Vrolijk, J., Molavi, M., Mol, S. T., & Kismihók, G. (2022). An AI-based open recommender system for personalized labor market driven education. Advanced Engineering Informatics, 52, 101508. https://doi.org/10.1016/j.aei.2021.101508
Tewari, A. S. (2020). Generating items recommendations by fusing content and user-item based collaborative filtering. Procedia Computer Science, 167, 1934–1940.
Tian, Y., Zheng, B., Wang, Y., Zhang, Y., & Wu, Q. (2019). College Library Personalized Recommendation System Based on Hybrid Recommendation Algorithm. Procedia CIRP, 83, 490–494. https://doi.org/10.1016/j.procir.2019.04.126
Tilahun, L. A., & Sekeroglu, B. (2020). An intelligent and personalized course advising model for higher educational institutes. SN Applied Sciences, 2(9), 1635. https://doi.org/10.1007/s42452-020-03440-4
Tomashevskiy, V., Pohrebniuk, I., Kunanets, N., Pasichnyk, V., & Veretennikova, N. (2021). Construction of individual learning scenarios. In Advances in Computer Science for Engineering and Education III (pp. 609–620). Springer.
Vagale, V., Niedrite, L., & Ignatjeva, S. (2020). The Use of the Recommended Learning Path in the Personalized Adaptive E-Learning System. In T. Robal, H. M. Haav, J. Penjam, & R. Matulevičius (Eds.), Databases and Information Systems (Vol. 1243, pp. 280–294). Communications in Computer and Information Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-57672-1_21
Valverde-Berrocoso, J., Garrido-Arroyo, M. d. C., Burgos-Videla, C., & Morales-Cevallos, M. B. (2020). Trends in educational research about e-learning: A systematic literature review (2009–2018). Sustainability, 12, 5153.
Vanitha, V., Krishnan, P., & Elakkiya, R. (2019). Collaborative optimization algorithm for learning path construction in E-learning. Computers & Electrical Engineering, 77, 325–338. https://doi.org/10.1016/j.compeleceng.2019.06.016
Vedavathi, N., & Anil Kumar, K. M. (2021). An efficient e-learning recommendation system for user preferences using hybrid optimization algorithm. Soft Computing, 25, 9377–9388. https://doi.org/10.1007/s00500-021-05753-x
Wang, M., & Lv, Z. (2022). Construction of personalized learning and knowledge system of chemistry specialty via the internet of things and clustering algorithm. The Journal of Supercomputing. Advance online publication. https://doi.org/10.1007/s11227-022-04315-8
Wei, G., Wu, Q., & Zhou, M. (2021). A hybrid probabilistic multiobjective evolutionary algorithm for commercial recommendation systems. IEEE Transactions on Computational Social Systems, 8, 589–598.
Xiao, J., Wang, M., Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. Journal of Ambient Intelligence and Humanized Computing, 9, 667–677.
Xiong, L., & Li, M. (2021). Behavioral modeling based on cloud computing and target user recommendation for English cloud classroom. Microprocessors and Microsystems, 80, 103587. https://doi.org/10.1016/j.micpro.2020.103587
Zakharova, I., Vorobeva, M., & Boganyuk, Y. (2022). Support Of Individual Educational Trajectories Based On The Concept Of Explainable Artificial Intelligence. Obrazovanie i Nauka, 24, 163–190. https://doi.org/10.17853/1994-5639-2022-1-163-190
Zhang, M., Zhu, J., Wang, Z., & Chen, Y. (2019). Providing personalized learning guidance in MOOCs by multi-source data analysis. World Wide Web, 22(3), 1189–1219. https://doi.org/10.1007/s11280-018-0559-0
Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439–457.
Zheng, F. (2022). Personalized Education Based on Hybrid Intelligent Recommendation System. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/1313711
Zhong, M., & Ding, R. (2022). Design of a personalized recommendation system for learning resources based on collaborative filtering. International Journal of Circuits, Systems and Signal Processing, 16, 122–131.
Zhou, Y., Huang, C., Hu, Q., Zhu, J., & Tang, Y. (2018). Personalized learning full-path recommendation model based on LSTM neural networks. Information Sciences, 444, 135–152.
Zhu, H., Tian, F., Wu, K., Shah, N., Chen, Y., Ni, Y., Zhang, X., Chao, K. M., & Zheng, Q. (2018). A multi-constraint learning path recommendation algorithm based on knowledge map. Knowledge-Based Systems, 143, 102–114. https://doi.org/10.1016/j.knosys.2017.12.011
Zhu, R., Zhu, Z., & Guo, Q. (2020). A Learning Resource Recommendation Model Based on Fusion of Sequential Information. In X. Sun, J. Wang, & E. Bertino (Eds.), Artificial Intelligence and Security (Vol. 12239, pp. 267–278). Lecture Notes in Computer Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-57884-8_24
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2024 Allan Kassio Beckman Soares da Cruz, Carlos de Salles Soares Neto , Mario Antonio Meireles Teixeira , Pamela Torres Maia Beckman da Cruz
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
The BRAJETS follows the policy for Open Access Journals, provides immediate and free access to its content, following the principle that making scientific knowledge freely available to the public supports a greater global exchange of knowledge and provides more international democratization of knowledge. Therefore, no fees apply, whether for submission, evaluation, publication, viewing or downloading of articles. In this sense, the authors who publish in this journal agree with the following terms: A) The authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY), allowing the sharing of the work with recognition of the authorship of the work and initial publication in this journal. B) Authors are authorized to distribute non-exclusively the version of the work published in this journal (eg, publish in the institutional and non-institutional repository, as well as a book chapter), with acknowledgment of authorship and initial publication in this journal. C) Authors are encouraged to publish and distribute their work online (eg, online repositories or on their personal page), as well as to increase the impact and citation of the published work.