Uma Análise Bibliométrica sobre Artigos Científicos na Área de Eólica, Weibull, Hidrogênio e o Software Homer Baseada na Scopus
DOI:
https://doi.org/10.14571/brajets.v16.n4.1168-1184Palavras-chave:
Hidrogênio verde, Bibliometrix, energia eólica, Weibull, HomerProResumo
O hidrogênio verde tem se tornado o centro das atenções no cenário mundial, com sua eficiência elevada e versatilidade de produção, onde cada vez mais estudos são produzidos relacionados a este tema. Uma das fontes renováveis responsáveis pela produção do hidrogênio verde é a energia eólica. E o vento é o fator determinante para a produção dessa energia e pela sua viabilidade, pois a potência gerada por uma turbina varia com o cubo da velocidade do vento, e uma das distribuições estatísticas utilizadas para analisar o comportamento do vento em uma região é a distribuição de Weibull. Além disso, existe o software que realiza o estudo da viabilidade de implementação de um parque eólico e da produção do hidrogênio, denominado Homer Pro. Sendo assim, esse trabalho visa analisar artigos relacionados com a energia eólica, o hidrogênio, o software Homer Pro, e a distribuição de Weibull para entender como está o desenvolvimento de pesquisa nessa área tão promissora. Para isso, realizou-se uma busca na base Scopus, considerando algumas palavras-chave e depois fez-se se análise desse conjunto de dados encontrados através da ferramenta Bibliometrix. O objetivo do presente trabalho trata de identificar a evolução do tema e mostrar a posição do Brasil.Referências
Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068–1079. https://doi.org/10.1016/j.enconman.2019.06.068
Abdin, Z., Zafaranloo, A., Rafiee, A., Mérida, W., Lipiński, W., & Khalilpour, K. R. (2020). Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 120, 109620. https://doi.org/10.1016/j.rser.2019.109620
Abedi, S., Alimardani, A., Gharehpetian, G. B., Riahy, G. H., & Hosseinian, S. H. (2012). A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems. Renewable and Sustainable Energy Reviews, 16(3), 1577–1587. https://doi.org/10.1016/j.rser.2011.11.030
Ahmad, J., Imran, M., Ali, S. F., Adnan, M., Ashraf, S. R., Hussain, Z., & Shoaib, M. (2021). Wind-to-hydrogen production potential for selected sites in pakistan. IEEE Access, 9, 134874–134898. https://doi.org/10.1109/ACCESS.2021.3116259
Akhtari, M. R., & Baneshi, M. (2019). Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Conversion and Management, 188, 131–141. https://doi.org/10.1016/j.enconman.2019.03.067
Alavi, O., Mostafaeipour, A., & Qolipour, M. (2016). Analysis of hydrogen production from wind energy in the southeast of Iran. International Journal of Hydrogen Energy, 41(34), 15158–15171. https://doi.org/10.1016/j.ijhydene.2016.06.092
Alavi, O., Mostafaeipour, A., Sedaghat, A., & Qolipour, M. (2017). Feasibility of a Wind-Hydrogen Energy System Based on Wind Characteristics for Chabahar, Iran. Energy Harvesting and Systems, 4(4), 143–163. https://doi.org/10.1515/ehs-2017-0003
Alavi, O., Najafi, P., & Hooshmand Viki, A. (2016). Influence of noise of wind speed data on a wind-hydrogen system. International Journal of Hydrogen Energy, 41(48), 22751–22759. https://doi.org/10.1016/j.ijhydene.2016.10.032
Almutairi, K., Hosseini Dehshiri, S. S., Hosseini Dehshiri, S. J., Mostafaeipour, A., Jahangiri, M., & Techato, K. (2021). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 36, 100684. https://doi.org/10.1016/j.esr.2021.100684
Almutairi, K., Mostafaeipour, A., Jahanshahi, E., Jooyandeh, E., Himri, Y., Jahangiri, M., Issakhov, A., Chowdhury, S., Hosseini Dehshiri, S., Hosseini Dehshiri, S., & Techato, K. (2021). Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study. Sustainability, 13(8), 4524. https://doi.org/10.3390/su13084524
Ampah, J. D., Jin, C., Agyekum, E. B., Afrane, S., Geng, Z., Adun, H., Yusuf, A. A., Liu, H., & Bamisile, O. (2023). Performance analysis and socio-enviro-economic feasibility study of a new hybrid energy system-based decarbonization approach for coal mine sites. Science of The Total Environment, 854, 158820. https://doi.org/10.1016/j.scitotenv.2022.158820
Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Ashrafi, Z. N., Ghasemian, M., Shahrestani, M. I., Khodabandeh, E., & Sedaghat, A. (2018). Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. International Journal of Hydrogen Energy, 43(6), 3110–3132. https://doi.org/10.1016/j.ijhydene.2017.12.154
Beccali, M., Brunone, S., Cellura, M., & Franzitta, V. (2008). Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings. Renewable Energy, 33(3), 366–382. https://doi.org/10.1016/j.renene.2007.03.013
Bornmann, L., & Daniel, H.-D. (2007). What do we know about theh index? Journal of the American Society for Information Science and Technology, 58(9), 1381–1385. https://doi.org/10.1002/asi.20609
Cano, A., Jurado, F., Sánchez, H., Fernández, L. M., & Castañeda, M. (2014). Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies. Journal of the Energy Institute, 87(4), 330–340. https://doi.org/10.1016/j.joei.2014.03.028
Chade, D., Miklis, T., & Dvorak, D. (2015). Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study. Renewable Energy, 76, 204–211. https://doi.org/10.1016/j.renene.2014.11.023
Chien, F., Ngo, Q.-T., Hsu, C.-C., Chau, K. Y., & Mohsin, M. (2021). Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification. Environmental Science and Pollution Research, 28(46), 65960–65973. https://doi.org/10.1007/s11356-021-15517-7
Cozzolino, R., Tribioli, L., & Bella, G. (2016). Power management of a hybrid renewable system for artificial islands: A case study. Energy, 106, 774–789. https://doi.org/10.1016/j.energy.2015.12.118
Dalton, G. J., Lockington, D. A., & Baldock, T. E. (2009a). Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renewable Energy, 34(4), 1134–1144. https://doi.org/10.1016/j.renene.2008.06.018
Dalton, G. J., Lockington, D. A., & Baldock, T. E. (2009b). Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renewable Energy, 34(4), 955–964. https://doi.org/10.1016/j.renene.2008.08.012
Dokhani, S., Assadi, M., & Pollet, B. G. (2023). Techno-economic assessment of hydrogen production from seawater. International Journal of Hydrogen Energy, 48(26), 9592–9608. https://doi.org/10.1016/j.ijhydene.2022.11.200
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
Duman, A. C., & Güler, Ö. (2018). Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society, 42, 107–126. https://doi.org/10.1016/j.scs.2018.06.029
Esteves, N. B., Sigal, A., Leiva, E. P. M., Rodríguez, C. R., Cavalcante, F. S. A., & de Lima, L. C. (2015). Wind and solar hydrogen for the potential production of ammonia in the state of Ceará – Brazil. International Journal of Hydrogen Energy, 40(32), 9917–9923. https://doi.org/10.1016/j.ijhydene.2015.06.044
Fazelpour, F., Soltani, N., & Rosen, M. A. (2016). Economic analysis of standalone hybrid energy systems for application in Tehran, Iran. International Journal of Hydrogen Energy, 41(19), 7732–7743. https://doi.org/10.1016/j.ijhydene.2016.01.113
Gallo, M. A., & García Clúa, J. G. (2023). Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange. Renewable Energy, 216, 118990. https://doi.org/10.1016/j.renene.2023.118990
Geovanni, H. G., Orlando, L. D., Rafael, P. D., Alberto, S. J., & Sebastian, P. J. (2010). Analysis of the current methods used to size a wind/hydrogen/fuel cell-integrated system: A new perspective. International Journal of Energy Research, 34(12), 1042–1051. https://doi.org/10.1002/er.1626
Ghazinoory, S., Ameri, F., & Farnoodi, S. (2013). An application of the text mining approach to select technology centers of excellence. Technological Forecasting and Social Change, 80(5), 918–931. https://doi.org/10.1016/j.techfore.2012.09.001
Gökçek, M., & Kale, C. (2018a). Optimal design of a Hydrogen Refuelling Station (HRFS) powered by Hybrid Power System. Energy Conversion and Management, 161, 215–224. https://doi.org/10.1016/j.enconman.2018.02.007
Gökçek, M., & Kale, C. (2018b). Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-çeşme. International Journal of Hydrogen Energy, 43(23), 10615–10625. https://doi.org/10.1016/j.ijhydene.2018.01.082
Hoseinzadeh, S., & Astiaso Garcia, D. (2022). Techno-economic assessment of hybrid energy flexibility systems for islands’ decarbonization: A case study in Italy. Sustainable Energy Technologies and Assessments, 51, 101929. https://doi.org/10.1016/j.seta.2021.101929
Iqbal, W., Yumei, H., Abbas, Q., Hafeez, M., Mohsin, M., Fatima, A., Jamali, M., Jamali, M., Siyal, A., & Sohail, N. (2019). Assessment of Wind Energy Potential for the Production of Renewable Hydrogen in Sindh Province of Pakistan. Processes, 7(4), 196. https://doi.org/10.3390/pr7040196
Islam, S. M. (2012). Increasing Wind Energy Penetration Level by Using Pumped Hydro Storage in Island Micro-Grid System. International Journal of Energy and Environmental Engineering, 3(1), 9. https://doi.org/10.1186/2251-6832-3-9
Jahangiri, M., Haghani, A., Alidadi Shamsabadi, A., Mostafaeipour, A., & Pomares, L. M. (2019). Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants. Energy Strategy Reviews, 23, 23–32. https://doi.org/10.1016/j.esr.2018.12.003
Jahangiri, M., Shamsabadi, A. A., Mostafaeipour, A., Rezaei, M., Yousefi, Y., & Pomares, L. M. (2020). Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. International Journal of Hydrogen Energy, 45(27), 13862–13875. https://doi.org/10.1016/j.ijhydene.2020.03.101
Jahangiri, M., Soulouknga, M. H., Bardei, F. K., Shamsabadi, A. A., Akinlabi, E. T., Sichilalu, S. M., & Mostafaeipour, A. (2019). Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. International Journal of Hydrogen Energy, 44(54), 28613–28628. https://doi.org/10.1016/j.ijhydene.2019.09.130
Kakavand, A., Sayadi, S., Tsatsaronis, G., & Behbahaninia, A. (2023). Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. International Journal of Hydrogen Energy, 48(38), 14170–14191. https://doi.org/10.1016/j.ijhydene.2022.12.285
Kalinci, Y., Dincer, I., & Hepbasli, A. (2017). Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. International Journal of Hydrogen Energy, 42(4), 2492–2503. https://doi.org/10.1016/j.ijhydene.2016.02.048
Kalinci, Y., Hepbasli, A., & Dincer, I. (2015). Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. International Journal of Hydrogen Energy, 40(24), 7652–7664. https://doi.org/10.1016/j.ijhydene.2014.10.147
Kar, S. K., Harichandan, S., & Roy, B. (2022). Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. International Journal of Hydrogen Energy, 47(20), 10803–10824. https://doi.org/10.1016/j.ijhydene.2022.01.137
Khan, M. J., & Iqbal, M. T. (2005). Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy, 30(6), 835–854. https://doi.org/10.1016/j.renene.2004.09.001
Khare, V., Nema, S., & Baredar, P. (2016). Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT. International Journal of Hydrogen Energy, 41(38), 16743–16751. https://doi.org/10.1016/j.ijhydene.2016.06.228
Kodicherla, S. P. K., Kan, C., & Nanduri, P. M. B. R. K. (2020). Likelihood of wind energy assisted hydrogen production in three selected stations of Fiji Islands. International Journal of Ambient Energy, 41(7), 823–832. https://doi.org/10.1080/01430750.2018.1492444
Koholé, Y. W., Fohagui, F. C. V., Djiela, R. H. T., & Tchuen, G. (2023). Wind energy potential assessment for co-generation of electricity and hydrogen in the far North region of Cameroon. Energy Conversion and Management, 279, 116765. https://doi.org/10.1016/j.enconman.2023.116765
Laengle, S., Merigó, J. M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., Dyson, R. G., Oliveira, J. F., & Teunter, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803–816. https://doi.org/10.1016/j.ejor.2017.04.027
Li, C., & Zuo, X. (2022). Effects of Hydrogen Storage System and Renewable Energy Sources for Optimal Bidding Strategy in Electricity Market. Energy Engineering, 119(5), 1879–1903. https://doi.org/10.32604/ee.2022.020472
Liponi, A., Frate, G. F., Baccioli, A., Ferrari, L., & Desideri, U. (2022). Impact of wind speed distribution and management strategy on hydrogen production from wind energy. Energy, 256, 124636. https://doi.org/10.1016/j.energy.2022.124636
Luta, D. N., & Raji, A. K. (2018). Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation. International Journal of Hydrogen Energy, 43(20), 9535–9548. https://doi.org/10.1016/j.ijhydene.2018.04.032
Luta, D. N., & Raji, A. K. (2019). Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications. Energy, 166, 530–540. https://doi.org/10.1016/j.energy.2018.10.070
Machhammer, O., & Janisch, I. (2023). Impact of Weibull Wind Speed Distribution on the Costs of Producing Power‐to‐X Products. Chemical Engineering & Technology, 46(9), 1935–1949. https://doi.org/10.1002/ceat.202300189
Maleki, A., & Pourfayaz, F. (2015). Sizing of stand-alone photovoltaic/wind/diesel system with battery and fuel cell storage devices by harmony search algorithm. Journal of Energy Storage, 2, 30–42. https://doi.org/10.1016/j.est.2015.05.006
Mohsin, M., Rasheed, A. K., & Saidur, R. (2018). Economic viability and production capacity of wind generated renewable hydrogen. International Journal of Hydrogen Energy, 43(5), 2621–2630. https://doi.org/10.1016/j.ijhydene.2017.12.113
Mostafaeipour, A., Khayyami, M., Sedaghat, A., Mohammadi, K., Shamshirband, S., Sehati, M.-A., & Gorakifard, E. (2016). Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, 41(15), 6200–6210. https://doi.org/10.1016/j.ijhydene.2016.03.038
Mostafaeipour, A., Rezaei, M., Moftakharzadeh, A., Qolipour, M., & Salimi, M. (2019). Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 44(16), 7983–7995. https://doi.org/10.1016/j.ijhydene.2019.02.047
Mostofi, F., & Shayeghi, H. (2012). Feasibility and optimal reliable design of renewable hybrid energy system for rural electrification in Iran. International Journal of Renewable Energy Research, 2(4), 574–582.
Ohunakin, O. S., Matthew, O. J., Adaramola, M. S., Atiba, O. E., Adelekan, D. S., Aluko, O. O., Henry, E. U., & Ezekiel, V. U. (2023). Techno-economic assessment of offshore wind energy potential at selected sites in the Gulf of Guinea. Energy Conversion and Management, 288, 117110. https://doi.org/10.1016/j.enconman.2023.117110
Ramos, V., & Iglesias, G. (2014). Wind Power Viability on a Small Island. International Journal of Green Energy, 11(7), 741–760. https://doi.org/10.1080/15435075.2013.823434
Razmjoo, A., Gakenia Kaigutha, L., Vaziri Rad, M. A., Marzband, M., Davarpanah, A., & Denai, M. (2021). A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO 2 emissions in a high potential area. Renewable Energy, 164, 46–57. https://doi.org/10.1016/j.renene.2020.09.042
Rehman, S., Habib, H. U. R., Wang, S., Buker, M. S., Alhems, L. M., & Al Garni, H. Z. (2020). Optimal Design and Model Predictive Control of Standalone HRES: A Real Case Study for Residential Demand Side Management. IEEE Access, 8, 29767–29814. https://doi.org/10.1109/ACCESS.2020.2972302
Rezaei, M., Dampage, U., Das, B. K., Nasif, O., Borowski, P. F., & Mohamed, M. A. (2021). Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems. Processes, 9(8), 1468. https://doi.org/10.3390/pr9081468
Rezaei, M., Khalilpour, K. R., & Jahangiri, M. (2020). Multi-criteria location identification for wind/solar based hydrogen generation: The case of capital cities of a developing country. International Journal of Hydrogen Energy, 45(58), 33151–33168. https://doi.org/10.1016/j.ijhydene.2020.09.138
Rezaei, M., Mostafaeipour, A., Jafari, N., Naghdi-Khozani, N., & Moftakharzadeh, A. (2020). Wind and solar energy utilization for seawater desalination and hydrogen production in the coastal areas of southern Iran. Journal of Engineering, Design and Technology, 18(6), 1951–1969. https://doi.org/10.1108/JEDT-06-2019-0154
Rezaei, M., Mostafaeipour, A., Qolipour, M., & Arabnia, H.-R. (2018). Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran. Energy and Environment, 29(3), 333–357. https://doi.org/10.1177/0958305X17750052
Rezaei, M., Mostafaeipour, A., Qolipour, M., & Momeni, M. (2019). Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran. Frontiers in Energy, 13(3), 539–550. https://doi.org/10.1007/s11708-019-0635-x
Saenz-Aguirre, A., Fernandez-Gamiz, U., Zulueta, E., Aramendia, I., & Teso-Fz-Betono, D. (2022). Flow control based 5 MW wind turbine enhanced energy production for hydrogen generation cost reduction. International Journal of Hydrogen Energy, 47(11), 7049–7061. https://doi.org/10.1016/j.ijhydene.2020.01.022
Sedaghat, A., Mostafaeipour, A., Rezaei, M., Jahangiri, M., & Mehrabi, A. (2020). A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. International Journal of Hydrogen Energy, 45(32), 15888–15903. https://doi.org/10.1016/j.ijhydene.2020.04.028
Siyal, S. H., Mentis, D., & Howells, M. (2015). Economic analysis of standalone wind-powered hydrogen refueling stations for road transport at selected sites in Sweden. International Journal of Hydrogen Energy, 40(32), 9855–9865. https://doi.org/10.1016/j.ijhydene.2015.05.021
Song, H., Guo, H., Wang, Y., Lao, J., Zhu, H., Tang, L., & Liu, X. (2021). A novel hybrid energy system for hydrogen production and storage in a depleted oil reservoir. International Journal of Hydrogen Energy, 46(34), 18020–18031. https://doi.org/10.1016/j.ijhydene.2020.09.081
Stojkovic, S., & Bakic, V. (2016). Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications. Thermal Science, 20(suppl. 1), 261–273. https://doi.org/10.2298/TSCI150308195S
Tribioli, L., Cozzolino, R., Evangelisti, L., & Bella, G. (2016). Energy Management of an Off-Grid Hybrid Power Plant with Multiple Energy Storage Systems. Energies, 9(8), 661. https://doi.org/10.3390/en9080661
Türkay, B. E., & Telli, A. Y. (2011). Economic analysis of standalone and grid connected hybrid energy systems. Renewable Energy, 36(7), 1931–1943. https://doi.org/10.1016/j.renene.2010.12.007
Türkay, B., & Telli, A. Y. (2011). An economic analysis of grid-connected hybrid energy systems. Energy Sources, Part B: Economics, Planning and Policy, 6(3), 228–241. https://doi.org/10.1080/15567241003614529
Turkdogan, S. (2021). Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, an International Journal, 24(2), 397–404. https://doi.org/10.1016/j.jestch.2020.08.017
Yazdani, H., Baneshi, M., & Yaghoubi, M. (2023). Techno-economic and environmental design of hybrid energy systems using multi-objective optimization and multi-criteria decision making methods. Energy Conversion and Management, 282, 116873. https://doi.org/10.1016/j.enconman.2023.116873
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2024 Carla Andrade, Mona Lisa Moura de Oliveira, Franciso Olímpio Moura Carneiro, André Valente Bueno, Fernanda Leite Lobo
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
The BRAJETS follows the policy for Open Access Journals, provides immediate and free access to its content, following the principle that making scientific knowledge freely available to the public supports a greater global exchange of knowledge and provides more international democratization of knowledge. Therefore, no fees apply, whether for submission, evaluation, publication, viewing or downloading of articles. In this sense, the authors who publish in this journal agree with the following terms: A) The authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY), allowing the sharing of the work with recognition of the authorship of the work and initial publication in this journal. B) Authors are authorized to distribute non-exclusively the version of the work published in this journal (eg, publish in the institutional and non-institutional repository, as well as a book chapter), with acknowledgment of authorship and initial publication in this journal. C) Authors are encouraged to publish and distribute their work online (eg, online repositories or on their personal page), as well as to increase the impact and citation of the published work.