Aprimoramento da Comunicação e da Retenção de RH no Odoo ERP por Meio da Integração de IA

Autores

  • Ahmed Gharabti Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco https://orcid.org/0009-0002-0571-4021
  • Imane El Kortbi Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco https://orcid.org/0009-0001-0016-7682
  • Houssame Nekhass Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco
  • Ahmed Bendahmane Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco https://orcid.org/0000-0003-3843-4800

Palavras-chave:

Inteligência artificial, ERP Odoo, recursos humanos, desempenho dos funcionários, comunicação digital

Resumo

Nesse cenário de negócios em rápida mudança, os recursos humanos são um dos fatores mais essenciais ou vitais de qualquer organização. Este artigo explica a incorporação da inteligência artificial no sistema ERP Odoo e como ela ajudará a melhorar a comunicação entre a equipe e a reduzir a taxa de atrito em qualquer organização. Por meio do aprendizado de máquina e da análise preditiva, as organizações tornam seu processo de tomada de decisão orientado por dados enquanto gerenciam as atividades de RH e outros desafios, incluindo comunicações ruins e uma alta taxa de rotatividade. Os sistemas ERP tradicionais não são capazes de facilitá-los e, muitas vezes, resultam em desinteresse entre os funcionários, aumentando assim a taxa de atrito. O presente estudo se concentra no efeito sociológico da IA na gestão de RH, destacando como a IA pode criar uma força de trabalho engajada sem elaborar os aspectos técnicos do processo de implementação. As soluções baseadas em IA fornecem monitoramento de desempenho em tempo real e análises preditivas que permitirão que os profissionais de RH entendam as necessidades dos funcionários com mais clareza e criem estratégias para a retenção eficaz de alvos. Este artigo apresenta como a IA pode potencialmente mudar as práticas de RH no Odoo ERP por meio de uma revisão da literatura e estudos de caso. A pesquisa destaca o papel que a IA desempenha na melhoria do envolvimento e da comunicação dos funcionários, resultando, portanto, em taxas de rotatividade mais baixas e em um grupo de trabalhadores mais satisfeito. O presente estudo contribui para fornecer mais percepções valiosas sobre outras pesquisas e aplicações práticas na gestão de RH.

Biografia do Autor

Ahmed Gharabti , Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Imane El Kortbi, Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University,
Morocco

Houssame Nekhass, Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Ahmed Bendahmane, Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University, Morocco

Research Laboratory in Information Sciences, Communication, and Discourse, ENS - Tétouan, Abdelmalek Essaâdi University,
Morocco

Referências

Ananda, & Wiratama, J. (2022). Evaluation of Enterprise Resource Planning (ERP) and Open-source ERP Modification for Performance Improvement. 2022 Seventh International Conference on Informatics and Computing (ICIC), 1‑9. https://doi.org/10.1109/ICIC56845.2022.10006926

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. DOI: 10.1023/A:1010933404324

Arora, M., Prakash, A., Mittal, A., & Singh, S. (2021). HR Analytics and Artificial Intelligence-Transforming Human Resource Management. 2021 International Conference on Decision Aid Sciences and Application (DASA), 288‑293. https://doi.org/10.1109/DASA53625.2021.9682325

Behera, B., & Kapoor, A. (2023). Impact of Artificial Intelligence on Human Resource Management.

Ganatra, N., & Pandya, J. (2023). The transformative impact of artificial intelligence on hr practices and employee experience : A review. Journal of Management Research and Analysis, 10, 106‑111. https://doi.org/10.18231/j.jmra.2023.018

Huang, M.-H., & Rust, R. T. (2021). Engaged to a robot? The role of AI in shaping employee engagement. Journal of Business Research, 124, 1-12.

Kadasah, E., & Alrwais, O. (2022). EVALUATION OF TRAINING MODULES IN OPEN SOURCE ERP.

Kandpal, B., Sharma, D., Kathuria, S., & Akram, S. V. (2023). Imperative Role of AI in Employee Engagement : The Lens of Job Charactersitics Model. 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN), 507‑511. https://doi.org/10.1109/ICPCSN58827.2023.00088

Kaur, M., & Gandolfi, F. (2023). Artificial Intelligence in Human Resource Management—Challenges and Future Research Recommendations. Review of International Comparative Management, 24, 382‑393. https://doi.org/10.24818/RMCI.2023.3.382

Konovalova, V., MITROFANOVA, E., MITROFANOVA, A., & GEVORGYAN, R. (2022). The Impact of Artificial Intelligence on Human Resources Management Strategy : Opportunities for the Humanisation and Risks. WISDOM, 2, 88‑96. https://doi.org/10.24234/wisdom.v2i1.763

Kudirat Bukola Adeusi, Prisca Amajuoyi & Lucky Bamidele Benjami (2024). Utilizing machine learning to predict employee turnover in highstress sectors International Journal of Management & Entrepreneurship Research, Volume 6, Issue 5.

Luna, P. B. (2023). Opportunities (but also Challenges) in Applying Artificial Intelligence to Human Resource Management within Companies. Revista CEA, 9(20), Article 20. https://doi.org/10.22430/24223182.2777

Luz, A., & Olaoye, G. (2024). Artificial Intelligence and Employee Experience : Leveraging Technology for Personalization.

Malik, A. (2024). A Study on the Relationship of Artificial Intelligence Applications in HR Processes for Assessing Employee Engagement, Performance, and Job Security. International Review of Management and Marketing, 14(5), 216–221. https://doi.org/10.32479/irmm.16838

Mer, Akansha. (2023). Artificial Intelligence in Human Resource Management: Recent Trends and Research Agenda. 10.1108/S1569-37592023000111B003.

Mittal, P., Jora, R. B., Sodhi, K. K., & Saxena, P. (2023). A Review of The Role of Artificial Intelligence in Employee Engagement. 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 1, 2502‑2506. https://doi.org/10.1109/ICACCS57279.2023.10112957

Olaoye, Favour & Potter, Kaledio & Shad, Ralph. (2024). AI IN HUMAN RESOURCE MANAGEMENT: PREDICTING EMPLOYEE RETENTION AND PERFORMANCE. Artificial Intelligence.

Paigude, S., Pangarkar, S. C., Hundekari, S., Mali, M., Wanjale, K., & Dongre, Y. (2023). Potential of Artificial Intelligence in Boosting Employee Retention in the Human Resource Industry. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), Article 3s. https://doi.org/10.17762/ijritcc.v11i3s.6149

Palos-Sanchez, P., Baena-Luna, P., Badicu, A., & Infante Moro, J. C. (2022). Artificial Intelligence and Human Resources Management : A Bibliometric Analysis. Applied Artificial Intelligence, 36. https://doi.org/10.1080/08839514.2022.2145631

Park, H., Ahn, D., Hosanagar, K., & Lee, J. (2021). Human-AI Interaction in Human Resource Management : Understanding Why Employees Resist Algorithmic Evaluation at Workplaces and How to Mitigate Burdens. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1‑15. https://doi.org/10.1145/3411764.3445304

Rahman, R. (2024). Emerging Trends of Artificial Intelligence in Human Resource Management : A Comprehensive Review And Meta Analysis. International Journal of Innovative Research in Engineering & Management, 06, 2582‑5208. https://doi.org/10.56726/IRJMETS54481

Salman, Hasan & Kalakech, Ali & Steiti, Amani. (2024). Random Forest Algorithm Overview. Babylonian Journal of Machine Learning. 2024. 69-79. 10.58496/BJML/2024/007.

Sammer, J. (2019, December 10). Bringing artificial intelligence into pay decisions. Retrieved from https://www.shrm.org/resourcesandtools/hr-topics/compensation/pages/bringing -artificialintelligence-into-pay-decisions.aspx.

Suri, P. K. (2023). AI-powered Enterprise Resource Planning. Blue Rose Publishers.

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42.

Downloads

Publicado

14-01-2025

Como Citar

Gharabti , A., El Kortbi, I., Nekhass, H., & Bendahmane, A. (2025). Aprimoramento da Comunicação e da Retenção de RH no Odoo ERP por Meio da Integração de IA. Cadernos De Educação, Tecnologia E Sociedade, 18(se1), 37–47. Recuperado de https://brajets.com/brajets/article/view/1993

Edição

Seção

Mobilizando a Ciência da Comunicação em Favor do Planeta