O Uso de Tecnologias Inovadoras na Educação:
análise da eficácia e implementação nos diferentes níveis de educação
DOI:
https://doi.org/10.14571/brajets.v16.n3.625-638Palavras-chave:
tecnologias inovadoras no ensino superior, educação para o desenvolvimento sustentável, formação de professores de biologia, nível de ensinoResumo
A integração de tecnologias inovadoras no processo educacional pode melhorar significativamente a compreensão e o envolvimento dos alunos com o assunto. O artigo trata da questão da implementação de tecnologias educacionais inovadoras no ensino de biologia em diferentes níveis de ensino. O artigo tem como objetivo pesquisar as tecnologias inovadoras mais utilizadas e eficazes para o ensino de biologia em estabelecimentos de ensino ucranianos. Para atingir o objetivo da pesquisa, utilizou-se um conjunto de métodos: teóricos: análise de fontes psicológicas, pedagógicas e metódicas; empírico: questionários, entrevistas; gráficos. Os resultados da pesquisa descobriram que os alunos têm a oportunidade de resolver uma série de problemas acadêmicos no curso de tecnologias educacionais modernas. Foi revelado que as tecnologias inovadoras mais eficazes para o ensino de biologia nas instituições de ensino ucranianas são software de simulação, realidade virtual e realidade aumentada, laboratórios online, gamificação, plataformas colaborativas online, aplicativos móveis, plataformas de aprendizagem personalizadas, ferramentas de análise de dados e kits de biotecnologia. . Os resultados mostram que a maioria dos professores jovens (1 a 10 anos de experiência profissional) implementam tecnologias educativas modernas. A pesquisa permitiu determinar os aplicativos móveis mais eficazes para o aprendizado de biologia, projetados para fornecer aos alunos formas interativas e envolventes de aprender conceitos de biologia em seus smartphones e tablets. Os resultados apontam para as plataformas colaborativas online mais utilizadas no processo educativo: Google Workspace for Education (ensino secundário) e Moodle (ensino superior).Referências
Ageitos, N., Puig, B., & Colucci-Gray, L. (2019). Examining reasoning practices and epistemic actions to explore students’ understanding of genetics and evolution. Science & Education, 28(9), pp 1209-1233. Available at: https://doi.org/10.1007/s11191-019-00086-6
Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, pp 334-342. Available at: https://doi.org/10.1016/j.chb.2015.12.054
Alpert, W., Couch, K., & Harmon, O. (2016). A randomized assessment of online learning. American Economic Review. 106 (5), pp 378-382. Available at: https://www.aeaweb.org/articles?id=10.1257/aer.p20161057
Anđić, B., Ulbrich, E., Dana-Picard, T. et al. (2023). A Phenomenography Study of STEM Teachers’ Conceptions of Using Three-Dimensional Modeling and Printing (3DMP) in Teaching. J Sci Educ Technol 32, pp 45-60. Available at: https://doi.org/10.1007/s10956-022-10005-0
Bakhov, I., Opolska, N., Bogus, M., Anishchenko, V., & Biryukova, Y. (2021). Emergency distance education in the conditions of COVID-19 pandemic: Experience of ukrainian universities. Education Sciences, 11(7) doi:10.3390/educsci11070364
Banda, H.J., & Nzabahimana, J. (2023). The Impact of Physics Education Technology (PhET) Interactive Simulation-Based Learning on Motivation and Academic Achievement Among Malawian Physics Students. J Sci Educ Technol 32, pp 127-141. Available at: https://doi.org/10.1007/s10956-022-10010-3
Bılyk, V., Yashchuk, S., Marchak, T., Tkachenko, S., & Goncharova, V. (2021). Organization of the Educational Process on Natural Science Training in Higher Education Institutions on the Basis of Innovation and Heuristics. Postmodern Openings, 12(2), pp 78-108. Available at: https://doi.org/10.18662/po/12.2/298
Cairns, D., Dickson, M., & McMinn, M. (2021). Feeling like a Scientist: Factors affecting students’ selections of technology tools in the science classroom. Journal of Science Education and Technology, 30(6), pp 766-776. Available at: https://doi.org/10.1007/s10956-021-09917-0
de Jong, T., Gillet, D., Rodríguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., & Law, E. (2021). Understanding teacher design practices for digital inquiry–based science learning: The case of Go-Lab. Educational Technology Research and Development, 69(2), pp 417-444. Available at: https://doi.org/10.1007/s11423-020-09904-z
Develaki, M. (2019). Methodology and epistemology of computer simulations and implications for science education. Journal of Science Education and Technology, 28(4), pp 353-370. Available at: https://doi.org/10.1007/s10956-019-09772-0
Feitosa, R. A., & Dias, A. M. (2019). Articulation between teaching, research and extension: tutorial education program (PET) contributions for biology students. Educacao & formacao, 4(12), pp 169-190. Available at: https://doi.org/10.25053/redufor.v4i12.819
Gnesdilow, D., & Puntambekar, S. (2021). Comparing middle school students’ science explanations during physical and virtual laboratories. Journal of Science Education and Technology, pp 1-12. Available at: https://doi.org/10.1007/s10956-021-09941-0
Gnidovec, T., Žemlja, M., Dolenec, A., & Torkar, G. (2020). Using augmented reality and the structure behavior function model to teach lower secondary school students about the human circulatory system. Journal of Science Education Technology, 29(774), p. 784. Available at: https://doi.org/10.1007/s10956-020-09850-8
Grund, J., & Brock, A. (2020). Education for sustainable development in Germany: not just desired but also effective for transformative action. Sustainability, 12(7), 2838. Available at: https://doi.org/10.3390/su12072838
Hartadiyati, E., Wiyanto, Rusilowati, A., & Prasetyo, A. (2020). Pedagogical content knowledge (PCK) of prospective biology teacher on respiratory system material to education for sustainable development. Journal of Physics: Conference Series, 1521, 42034. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1521/4/042034
Heradio, R., de la Torre, L., & Dormido, S. (2016). Virtual and remote labs in control education: A survey. Annual Reviews in Control, 42, pp 1-10. Available at: https://doi.org/10.1016/j.arcontrol.2016.08.001
Iatsyshyn, A. V., Kovach, V. O., Romanenko, Y. O., & Iatsyshyn, A. V. (2019). Cloud services application ways for preparation of future PhD. Paper presented at the CEUR Workshop Proceedings, , 2433 197-216.
Lee, S. W. Y., Tsai, C. C. (2013). Technology-supported Learning in Secondary and Undergraduate Biological Education: Observations from Literature Review. Sci Educ Technol 22, pp 226-233. Available at: https://doi.org/10.1007/s10956-012-9388-6
Lin, C. J., Wu, T. T., Wang, T. H., Pedaste, M., Huang, Y. M. (2022). Exploring Student Discussion Topics in STEAM Hands-On Collaborative Activity. In: Huang, Y.M., Cheng, S.C., Barroso, J., Sandnes, F.E. (eds) Innovative Technologies and Learning. ICITL. Lecture Notes in Computer Science, vol 13449. Springer, Cham. Available at: https://doi.org/10.1007/978-3-031-15273-3_2
Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D., & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9, 2364. Available at: https://doi.org/10.3389/fpsyg.2018.02364
Ministers of Ukraine. (2020). The concept of development of science, technology, engineering and mathematics education (STEM education). Zakon Rada. Available at: https://zakon.rada.gov.ua/laws/show/960-2020-%D1%80#Text
Molderez, I., & Fonseca, E. (2018). The efficacy of real-world experiences and service learning for fostering competences for sustainable development in higher education. Journal of cleaner production, 172, pp 4397-4410. Available at: https://doi.org/10.1016/j.jclepro.2017.04.062
Mystakidis, S., Berki, E., & Valtanen, J. P. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: A systematic literature review. Applied Sciences, 11(5), p. 2412. Available at: https://doi.org/10.3390/app11052412
O'Flaherty, J., & Liddy, M. (2018). The impact of development education and education for sustainable development interventions: a synthesis of the research. Environmental education research, 24(7), pp 1031-1049. Available at: https://doi.org/10.1080/13504622.2017.1392484
Osti, F., de Amicis, R., Sanchez, C. A., Tilt, A. B., Prather, E., & Liverani, A. (2021). A VR training system for learning and skills development for construction workers. Virtual Reality, 25(2), pp 523-538. Available at: https://doi.org/10.1007/s10055-020-00470-6
Palos-Sanchez, P. R., Folgado-Fernandez, J. A., & Rojas-Sanchez, M. (2022). Virtual reality technology: Analysis based on text and opinion mining. Mathematical Biosciences and Engineering, 19(8), pp 7856-7885. Available at: https://doi.org/10.3934/mbe.2022367
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), pp 785-797. Available at: https://doi.org/10.1037/edu0000241
Paszkiewicz, A., Salach, M., Dymora, P., Bolanowski, M., Budzik, G., & Kubiak, P. (2021). Methodology of implementing virtual reality in education for industry 4.0. Sustainability, 13(9), 5049. Available at: https://doi.org/10.3390/su13095049
Rojas-Sánchez, M. A., Palos-Sánchez, P. R. & Folgado-Fernández, J. A. Systematic literature review and bibliometric analysis on virtual reality and education. Educ Inf Technol 28, pp 155-192 (2023). Available at: https://doi.org/10.1007/s10639-022-11167-5
Rudyshyn, S., Koreneva, I., Yakushko, K., Babenko-Zhyrnova, M., Lupak, N. (2022). Simulation of Educational and Professional Training of Students. Apuntes Universitarios, 12(2), pp 114-132. Available at: https://doi.org/10.17162/au.v12i2.1036
Sari, D. P., Wulan, A. R., & Solihat, R. (2018). Developing 21st century student research skills through assessment matrix and edmodo in biology project. Journal of Physics: Conference Series, 1157(2), 022093. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022093
Sebastian-Lopez, M., & de Miguel Gonzalez, R. (2020). Mobile learning for sustainable development and environmental teacher education. Sustainability, 12(22), 9757. Available at: https://doi.org/10.3390/su12229757
Sidorovich, M., Tsurul, O., Romaniuk, R., Solona, Y., Kundelchuk, O., Koreneva, I., Blazhko, O. (2022). Education for Sustainable Development in Training of Future Biology Teachers for Research Activity: An Applied Aspect. Revista Românească pentru Educaţie Multidimensională, 14(2), pp 19-49. Available at: https://doi.org/10.18662/rrem/14.2/565
Sun, J. C. Y., Ye, S. L., Yu, S. J. et al. (2023). Effects of Wearable Hybrid AR/VR Learning Material on High School Students’ Situational Interest, Engagement, and Learning Performance: the Case of a Physics Laboratory Learning Environment. Sci Educ Technol 32, pp 1-12. Available at: https://doi.org/10.1007/s10956-022-10001-4
Ulus, B., & Oner, D. (2020). Fostering middle school students’ knowledge integration using the Web-based inquiry science environment (WISE). Journal of Science Education and Technology, 29(2), pp 242-256. Available at: https://doi.org/10.1007/s10956-019-09809-4
UNESCO Strategy on Technological Innovation in Education (2022-2025). Available at: https://unesdoc.unesco.org/ark:/48223/pf0000378847
Wang, H.-Y., & Sun, J. C.-Y. (2021). Real-time virtual reality co-creation: Collective intelligence and consciousness for student engagement and focused attention within online communities. Interactive Learning Environments. Available at: https://doi.org/10.1080/10494820.2021.1928711
Zhai, X., & Shi, L. (2020). Understanding how the perceived usefulness of mobile technology impacts physics learning achievement: A pedagogical perspective. Journal of Science Education and Technology, 29(6), pp 743-757. Available at: https://doi.org/10.1007/s10956-020-09852-6
Zinovieva, I. S., Artemchuk, V. O., Iatsyshyn, A. V., Popov, O. O., Kovach, V. O., Iatsyshyn, A. V., . . . Radchenko, O. V. (2021). The use of online coding platforms as additional distance tools in programming education.Paper presented at the Journal of Physics: Conference Series, , 1840(1) doi:10.1088/1742-6596/1840/1/012029
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Inna Koreneva, Nataliia Myroshnychenko, Liubov Mykhailenko, Olha Matiash, Hanna Kuzmenko
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License. A revista segue a política para Periódicos de Acesso Livre, oferecendo acesso livre, imediato e gratuito ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona mais democratização internacional do conhecimento. Por isso, não se aplica taxas, sejam elas para submissão, avaliação, publicação, visualização ou downloads dos artigos. Além disso, a revista segue a licença Creative Common (CC BY) permitindo qualquer divulgação do artigo, desde que sejam referenciados o artigo original. Neste sentido, os autores que publicam nesta revista concordam com os seguintes termos: A) Os autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License (CC BY), permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista. B) Autores têm autorização para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional e não institucional, bem como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista. C) Autores sãoo estimulados a publicar e distribuir seu trabalho online (ex.: repositórios online ou na sua página pessoal), bem como aumentar o impacto e a citação do trabalho publicado.